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Abstract The objective of this study is to develop a new downscaling appr-
oach, which can take into account atmospheric and land surface heterogen-
eities for a better precipitation prediction. We address the effect of land 
surface heterogeneity on the land–atmosphere interactions through coupling a 
land data assimilation system with a land–atmosphere coupled model. This 
system relies on a mesoscale model as the atmospheric part, a Land Surface 
Scheme as a model operator, a Radiative Transfer Model as an observation 
operator, satellite data and the Simulated Annealing method for minimization. 
To assess the effectiveness of the new system, two-dimensional numerical 
experiments were carried out in a mesoscale area of the Tibetan Plateau for 
dry and wet seasons. The results showed significant differences compared 
with standard regional atmospheric model outputs and were more consistent 
with satellite microwave brightness temperature observations. The latter 
induced an improvement of the spatial distribution of soil moisture, which 
strongly affected the convection systems. 
Key words  data assimilation; land surface scheme; regional model; remote sensing 

 
 
INTRODUCTION 
 
Since GCMs are still unable to produce mesoscale and local atmospheric phenomena, 
downscaling methods are necessary to bridge the gap between a GCM’s scale, and 
other smaller modelling scales. One standard method is nesting using regional 
atmospheric models, but this approach is till now unable to reproduce local phenomena 
and extreme events (Xu, 1999), because nesting does not include effects of both land 
surface and atmospheric heterogeneities. In fact, soil moisture, as a surface boundary 
condition, plays important roles in the partition and estimation of surface fluxes, which 
in return drive the surface–atmosphere interaction. Thus it is essential that regional 
models include accurate and robust initial surface condition in order to capture 
regional atmospheric structure. 
 On the other hand, heterogeneity of atmospheric parameters especially 
precipitation, is also very important in atmospheric modelling considering its role in 
atmospheric thermal control through heat release and absorption. 
 On the way to overcome these problems, related to both land surface (soil 
moisture) and atmosphere (precipitation), microwave remote sensing due to its global 
and frequent availability is an appropriate tool for retrieving the spatial and temporal 
coverage of those parameters. But due to the small penetration depth of these satellite 
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measurements, in the case of soil moisture, they can not be directly used by regional 
models. Integrating satellite observation within a land surface scheme through a data 
assimilation process would provide soil moisture profiles physically consistent with 
regional model use. So, to overcome the limitations related to the standard nesting 
method, a new downscaling approach by the assimilation of satellite brightness 
temperature within a coupled land–atmosphere variational scheme would be 
considered to take into account both atmospheric and land surface heterogeneities. 
 As a first step, in this paper; we investigate the effect of introducing land surface 
heterogeneities on land–atmosphere interactions and their mechanisms by coupling a 
land data assimilation system to retrieve the whole soil moisture profile as an initial 
surface condition with a coupled land–atmosphere model. 
 
 
A COUPLED LAND–ATMOSPHERE DATA ASSIMILATION SYSTEM 
 
General scheme 
 
In this study, a land data assimilation system is coupled with a coupled land–
atmosphere model. This is done by first coupling a land surface scheme with a regional 
model to guarantee land–atmosphere interactions, then introducing the surface 
heterogeneity by assimilating the microwave remote sensing data into the land surface 
scheme and feeding back to the land–atmosphere coupled model (Fig. 1). The scheme 
components are explained in the following section.  
 
 
The land–atmosphere coupled model  
 
 The atmospheric module As a mesoscale prediction model which includes: a land 
surface scheme that can reproduce surface fluxes exchanges, and a cloud microphysics 
 
 

 
Fig. 1 Satellite data assimilation of a land atmosphere coupled system. 



Effect of coupled land–atmosphere satellite data assimilation system  
 
 

237

module that describe precipitation development, the Advanced Regional Prediction 
System ARPS elaborated by the Center for Analysis and Prediction of Storms at the 
University of Oklahoma was chosen for this study. It includes four packages: an 
atmospheric module, a land surface scheme, a radiation package and parameterization 
of cloud microphysics. 
 The atmospheric model is three-dimensional (3-D) and nonhydrostatic, which 
describes the dynamics of air motion, especially detecting the generation of convection 
systems. The model is governed by momentum equations, thermodynamic equation, 
continuity equation, three/six transport equations of water-categories, and sub-grid-
scale turbulent kinetic energy (TKE) sub model. These equations are transformed from 
the physical domain to computational domain by the terrain-following coordinate and 
grid-stretching in vertical. The cloud microphysics includes the NEM (Schultz, 1995) 
scheme, the Kessler two-category liquid water scheme and the three-category ice 
scheme; also modified a Kuo cumulus convection scheme is included as well as the 
Kain-Fritsch convective parameterization. The radiation package includes two options 
for solar radiation and long-wave atmospheric radiation estimation, a simple 
calculation option and, a radiative transfer parameterization one. More details about 
ARPS are found in Xue et al. (1995). 
 

 The land surface scheme The land surface scheme originally included in ARPS is 
the ISBA (Interaction between Soil, Biosphere, and Atmosphere) developed by 
Noilhan & Planton (1989). Considering the improvement of soil moisture and fluxes 
estimation, the revised Simple Biosphere Model 2: SiB2 (Sellers et al., 1996) was 
chosen as an alternative to the ISBA. In fact the SiB2 is a dual-source model in which 
fluxes are originating from the soil surface and vegetation canopy. It incorporates 
simple representations of vertical soil moisture transport, plant-controlled transpira-
tion, interception, evaporation, infiltration, and sensible and ground heat fluxes 
through physically-based mechanisms. SiB2 includes three soil layers: a surface soil 
layer of a few centimetres, which acts as a significant source of direct evaporation 
when moist; a root zone, which is the supplier of soil moisture to the roots and 
accounts for transpiration; and a deep soil layer, which acts as a source for hydro-
logical base flow and upward recharge of the root zone. Moreover SiB2 can handle 
satellite data to specify time-varying phenological properties (LAI, FPAR). 
 
 
The Land Data Assimilation System 
 
 Cost function The Land Data Assimilation System (LDAS) assimilates passive 
microwave radiometer observations of brightness temperature into the land surface 
scheme. The SiB2 is used as a model operator driven by the outputs of the coupled 
land–atmosphere model. 
 The Radiative Transfer Model (RTM), as an observation operator, calculates the 
brightness temerature which is then compared with the satellite observation through 
the following cost function: 
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here x and M are the model’s state vector (soil moistures at three different layers, 
surface temperature and canopy temperature) and its corresponding dynamics operator, 
respectively. 0

iy  is the radiometer observation at time ti and H is an observation 
operator. Both H and M are nonlinear operators. R is the observational error covariance 
matrix and consists of instrumental and representativeness errors. B is an a priori 
weighting matrix, meant to approximate the error covariance matrix of background. 
Minimizing J obtains the optimal solution of above cost function (Pathmathevan et al., 
2003).  
 The estimation of the error covariance matrices B and R is achieved by assuming 
unbiased Gaussian error distributions. The practical way to estimate the related error 
statistics is to assume that they are stationary over a period of time and uniform over a 
domain so they can be empirically estimated through a number of error realizations 
since errors cannot be observed directly. In this study, the specification of the matrix B 
was done using statistics on the departure between many 24 h and 48 h forecasts, while 
for matrix R the measurement errors added to the brightness temperature values were 
assumed to have a standard deviation of 1K. 
 

 Radiative transfer model Based on the emission behaviour of dry soil and liquid 
water in the microwave region, a physically-based radiative transfer model was 
developed by Koike et al. (2000), allowing the estimation of soil moisture from the 
land surface expressed as follows: 
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This equation represents the total emission and attenuation from the land surface (s), 
vegetation canopy (c), and rainfall drop (r). Continuously, TBT is the brightness 
temperature at the measurement level, Tbs is the brightness temperature at the ground 
level, T is the actual temperature, τ is the optical depth, ω is the single scattering 
albedo, and N is the total number of rain drops. Given that the atmosphere and rain are 
transparent at lower frequencies, the third term of the right hand side of the above 
equation is neglected (Fuji et al., 2000).  
 τC is the vegetation optical depth function of the vegetation water content we 
computed after Jackson et al. (1991): 

θ=τ cos/eC bw  (2b) 

where b is a coefficient that depends on the canopy structure and frequency.  
 The dielectric constant of the soil that is mainly dependent on our assimilation 
variable (soil moisture) is computed after Dobson et al. (1985). 
 In order to consider the soil particle scattering effect in dry soil, the 4 Stream Fast 
Radiative Transfer Model, originally developed for the atmosphere (Liu, 1998), was 
used to compute the outcoming brightness temperature at the ground level Tbs, which is 
then included in equation (2a). 
 Assuming the soil medium as a parallel plane azimuthally symmetric containing 
spherical soil particles, the radiative transfer process to derive Tbs can be expressed by: 
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where, ),( µτvI ,[ ),( µτhI ] is the radiance at optical depth ( dzeκ=τ ) in direction µ for 
vertical or [horizontal] polarization, ω0 is the single scattering albedo of soil particle, 
Bp(τ) is the Plank function and Pij(i, j = H or V) is the scattering phase function. 
 Liu had efficiently solved this model (equation (2c)), by expressing the scattering 
phase function with the Henyey-Greenstein formula (1941), assuming a non cross 
polarization, limiting the number of streams to four and using the discrete ordinate 
method. 
 

 Simulated annealing A heuristic optimization approach called Simulated Anneal-
ing (SA), which is capable of minimizing the cost function without using adjoint 
models is used in this system. SA allows avoiding problems due to strong nonlinearity 
and discontinuity, in finding the global minimum in the hilly structure of the cost 
function. It is based on an analogous approach to the metal annealing in 
thermodynamics (William et al., 1992).  
 

 Coupled assimilation cycle In order to have a continuous scheme (Courtier, 
1997), the coupled assimilation cycle is performed as follows: first, the coupled land–
atmosphere model (ARPS-SiB2) is run for an assimilation window time T to give an 
initial guess and forcing parameters for the Land Data Assimilation System (LDAS); 
and second, the LDAS is run for one assimilation window which then feedbacks the 
new surface initial condition for the coupled model at time t = t – T; third, the coupled 
model is run for two assimilation windows 2T, the first window output is then consid-
ered as the optimal one and the second will serve as forcing for the next LDAS run.  
 
 
NUMERICAL EXPERIMENT 
 
The Tibetan Plateau was chosen for this study, firstly because it has a heterogeneous 
soil moisture distribution resulting from its mountain-valley topographical structure, 
and an active convection system (Yang et al., 2004), and secondly because of its 
available comprehensive data sets collected during the GAME IOP 1998 project.  
 To investigate the effect of the coupled system on the different land surface and 
atmospheric outputs and mechanism, a 2-D numerical experiment was preferred to a  
3-D one for its computational efficiency and its ability to effectively address the 
physical mechanisms rather than focusing on any observational validation. 
 On the other hand, knowing that the westerly is dominating the flow in the Tibetan 
Plateau, which implies that the west–east direction have more homogeneous atmos-
pheric and surface conditions than the north–south direction (Yang et al., 2004), a  
250-km section running south to north and centred at (31.750°N, 91.635°E) was 
selected as our experimental domain. 
 To be able to trace the land surface heterogeneities and to detect the generation of 
convective systems, a 5 km spatial resolution was considered. 
 In order to assess the system efficiency on a wide range of climate conditions, the 
experiments were performed during a Monsoon period (July) as a wet season, then 
during a pre-Monsoon period (May) as a dry season. 
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 The lateral boundary conditions were set to periodic in order to avoid external and 
bigger scale atmospheric effect on our domain. And, for a fast and complete 
parametrization of the cloud, the NEM microphysics scheme was applied with an 
explicit convective resolution. 
 For the LSS (SiB2), the three soil layers were set to 0–4 cm, 4–20 cm and up to 
150 cm for the deep layer. The vegetation type in the Tibetan plateau corresponds to 
grassland which is C4 class in SiB2 according to Sellers et al. (1996). Other static 
parameters associated with land cover and soil were obtained from Sellers et al. (1996) 
and the Game-Tibet experiment.  
 The radiative transfer model parameters were also estimated according to the 
Game-Tibet experiment (Koike et al., 1999), and the TMI (TRMM Microwave 
Imager) brightness temperature of 10.65 and 19.35 GHz were used in the assimilation 
scheme. 
 
 
RESULTS AND DISCUSSION 
 
The coupled land–atmosphere assimilation system was tested during a wet period (5–
10 July 1998) and a dry period 20–25 May 1998), by two numerical experiments each: 
a coupled land–atmosphere model ARPS-SiB2 case run without assimilation referred 
as (noAss) and an assimilation case where ARPS-SiB2 is coupled in a continuous 
cycle with land data assimilation, referred in the following sections as (Ass). 
 
 
Wet season 
 
Being a very complex variable in atmospheric modelling due to its integration of the 
surface local state, as well as both local and synoptic atmospheric state, precipitation is 
the most difficult variable to predict. In this experiment, the precipitation results  
(Fig. 2) showed that although both cases started from the same wet atmospheric 
conditions, the noAss case generated much less precipitation than the assimilation Ass 
case because the soil condition was wetter due to its correction by the observed 
estimates through the land data assimilation scheme. In fact Fig. 3 shows that in the 
noAss case soil moisture, gradually dry up from 20% to less than 5%, while in the Ass 
cases it shows an increase of the soil moisture to higher values. This is mainly due to 
the reason that observed satellite data processed through the radiative transfer model 
gave higher and more realistic values to the coupled model. The higher amount of 
precipitation in the Ass case is also explained by the higher values of latent heat flux, 
and lower values of sensible heat flux (Fig. 4) being consistent to the actual flux 
partition in Tibet during the Monsoon season (Fig. 5). An increase of soil moisture 
tends to increase the latent heat flux and therefore atmospheric moisture, while at the 
same time it decreases the sensible heat flux and therefore the air temperature. These 
changes work in the same direction to increase relative humidity making precipitation 
more intense and frequent. This suggests that the precipitation generation in the 
Tibetan Plateau is strongly influenced by the soil moisture conditions. 
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Fig. 2 Temporal/spatial distribution of precipitation (wet season). 

F  
ig. 3 Temporal/Spatial surface soil moisture distribution (wet season).
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Fig. 4 Spatially averaged fluxes (wet season). 
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Fig. 5 Observed surface fluxes at Amdo station (wet season). 

 
 
 To confirm this hypothesis, the local convection systems as drivers of precipitation 
were also investigated. During the day, the sun heats the ground and evaporates water 
into the air, subsequently the air near the surface become unstable allowing air parcels 
from the surface layer to rise and thus initiating the convection process. A useful 
measure of this process is the Lifted Index which expresses the difference of the rising 
parcel equivalent potential temperature with its surrounding environment. In Fig. 6, we 
plotted the spatio-temporal distribution of the lifted index for the Ass and noAss cases. 
In the Ass case, more atmospheric instability was observed (Li < –4) due to wet 
convection, which resulted in more frequent precipitation events than in the NoAss 
case. In fact in this case, vertical motion initiated the deep convection and thus 
enhanced the vertical moisture transport. 

 
Fig. 6 Temporal/spatial lifted index distribution (wet season) 

 
 
Dry season  
 
In the dry season case, the precipitation (Fig. 7) also showed different spatial and 
temporal pattern for the assimilation and non-assimilation cases. This can be also 
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Fig. 7 Temporal/spatial precipitation distribution (dry season). 

 
 
explained by the different soil moisture conditions and their related interaction with the 
atmosphere. 
 Figure 8 shows that in the no assimilation case, a clear diurnal cycle was observed 
ranging from 13% during noon time to approximately 17% in the early morning, 
mostly spatially homogeneous distributed, while in the assimilation case, the updating 
process based on satellite observations at the beginning of each assimilation window 
(06:00 h local time), tended to smooth back the diurnal variation by lowering its 
magnitude through lowering the early morning soil moisture to drier values. Moreover, 
in the assimilation case, a much more heterogeneous spatial distribution was fed back 
to the system instead of the homogeneous one.  
 These soil moisture conditions influenced the surface fluxes to lead to different 
atmospheric stability conditions; in fact, atmospheric instability was observed in both 
the assimilation and non-assimilation cases, especially around noon time when solar 
heating is at its maximum (Fig. 9). 
 Moreover, the investigation of the lifting condensation level (Fig. 10) showed that 
the planetary boundary layer was shallower in the assimilation case, inferring the 
generation of the moist convection process and resulting in more frequent precipitation, 
especially in the last 2 days. 
 

 
Fig. 8 Temporal/spatial surface soil moisture distribution(dry season). 
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Fig. 9 Temporal/Spatial Lifted index distribution(dry season). 
 

Fig. 10  Temporal/Spatial Lifting Condensation Level distribution (dry season). 
 
 
 

 In this dry season simulation, it is important to mention that even though the 
atmosphere was more unstable, especially in the non-assimilation case (Li < –4), 
precipitation did not occur as much as in the last two days of the assimilation case. 
This can be explained by the lack of atmospheric moisture needed to generate 
precipitation. Of particular importance also, the soil moisture heterogeneous pattern 
that encouraged the generation of small convergence zone resulting in specific vertical 
motion, which enhanced the moist convection process and thus precipitation (see the 
fourth day in Figs 7 and 8).  
 By coupling a land data assimilation with a coupled land–atmosphere system in a 
continuous way, the soil moisture became more consistent with observed satellite 
brightness temperature. And through the consideration of the surface heterogeneities 
given by the satellite observation, the assimilation system provided better spatial 
distribution of soil moisture, which had a strong influence on the mechanism of local 
convection and consequently precipitation predictability. 
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