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Abstract The channelized water path distribution from any point in a basin to 
the outlet through the river network, and its hydraulic length L, are considered. 
Using the Strahler ordering scheme, each path is split into n i-order 
components whose lengths are li. The length L is studied as the sum 

∑
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n

i
ilL

1

, and subsets ∑
<

=

=
nm

i
ilL

1
'  are considered. pdf(li) have a strong scaling 

property, except for the highest orders due to a hierarchical constraint. 
Consistently, pdf(L) is positively skewed, whereas successive pdf(L′) display a 
more and more regular unimodal negatively-skewed shape. These evidences 
are exemplified with a set of Tunisian semiarid nested basins, showing 
regularity through levels, scales and heterogeneity, despite a weak global self-
similarity.  
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INTRODUCTION 
 
The river network is easily observed as a hydro-geomorphological structure, whatever 
the scale of the basin and the hydro-climatic context are, from various kinds of data 
sources and through diverse human-based and/or automatic procedures. Metric, 
organizational and scaling properties of a river network can thus be identified for any 
basin, independent of its degree of (un-)gauging. The identification of the major links 
between geomorphometry and hydrology may thus lead to a kind of robust 
“geomorphometric gauging”, eventually to be adapted according to the hydrological 
stakes, scales and contexts. 
 The aim of this paper is to present: (a) the analysis of the river network organiza-
tion through particular objects and variables—channelized paths down to the outlet, 
splitting through the Strahler levels, subsets of level cascade, and associated lengths 
and pdfs—which leads to the identification of a multi-level and multi-scale underlying 
structure of diverse, strongly self-similar river networks (see Cudennec et al., 2004); 
and (b) its application to a particular set of nested basins whose self-similarity is weak 
because of the heterogeneity of drainage characteristics, in order to check its 
genericity. 



A multi-level and multi-scale structure of river network geomorphometry  
 
 

423

 

1

1
1

2
2

11

3

1
2

11

(b)

l3 

l2 
lh 

(d) (c)

l3

l2

l1
lh

2

outlet 

2 
3

1 1

1
1

1

3

3

2 
1

11

(a)

2 

 
Fig. 1 Hypothetical basin of order n = 3. Strahler ordering: (a) Links. (b) Streams of 
order 1 , order 2 and order 3 . (c) and (d) Examples of paths 
run by a water drop from a point to the outlet.  lh  is the length of the path 
through the hillslope. l1 , l2 and l3 are, respectively, the lengths 
of 1st, 2nd and 3rd orders components. 

 
 
RIVER NETWORKS’ GEOMORPHOMETRY: HIERARCHY-BASED AND 
GLOBAL APPROACHES 
 
The branched topology and scaling 
 
In a basin, the river network is made up of particular points: the unique outlet, 
upstream extremities and junctions. The part contained between two such successive 
particular points is a link. The Strahler (1952) ordering scheme permits the description 
of a link position in a river network (Fig. 1(a)). According to this ordering method, the 
stream is defined as the set of successive links of the same order (Fig. 1(b)). The 
spectrum of orders represented in the network can be seen as a cascade, in the frame of 
which scaling evidences have been identified.  
 The first two Horton laws give the number of streams Ni and the mean stream 
length iL  of Strahler order i (Horton, 1945; Schumm, 1956), on the basis of a 
bifurcation RB = Ni / Ni+1 and a length iiL LLR /1+=  ratios whose stabilities are 
statistically verified. These branching laws, among other pioneering evidence of 
scaling, were then embraced within the application of the fractal geometry to river 
networks, which led to the identification of generic self-affine and self-similar 
properties. From their synthesis of the topic, Rodriguez-Iturbe & Rinaldo (1997) 
reached the conclusion that “the search for invariance properties across scales as a 
basic hidden order in hydrologic phenomena is one of the main themes of hydrologic 
science”. Our aim is to contribute to this search through the analysis of a basin-level 
geomorphometric function through the Strahler cascade. 
 
 
Basin-level geomorphometric functions 
 
From the hydrological point of view, one can focus on a function describing the basin 
organization in terms of flow paths until the outlet through the network. In this context, 
both the area function and the width function have been introduced (see Rinaldo & 

(a) (b) (c) (d) 
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Rodriguez-Iturbe, 1996). These functions are the pdfs, respectively, of the basin 
contributing area and of the number of links in the network, with respect to flow 
distance to the outlet. Any eventual regular pattern observable for these functions 
would be a useful network-level geomorphometric gauge, eventually linked with 
basin-level hydrological processes and features. But one can notice that, even if the 
width function proves to itself have scaling characteristics (see Rodriguez-Iturbe & 
Rinaldo, 1997), the relationship between the river network self-similarity and the 
shape—particularly the systematic skewness—of the area and width functions is not 
yet fully understood and assessed. 
 
 
THE CONSIDERED GEOMORPHOMETRIC FRAMEWORK 
 
Within the path followed by a water drop to reach the outlet, the hillslope path and the 
channelized path through the river network are considered separately. The length L of 
the channelized path is identified and called the hydraulic length. The pdf of L, i.e. the 
area–hydraulic length function of the basin, is slightly different from both the width 
function and the area–distance function, in a sense which opens two major interests 
and perspectives. It is indeed based on, and limited to, the river network seen: (a) as a 
fractal object within the two-dimensional (2-D) planar basin; and (b) as a structure 
determining both the drainage from hillslopes and the upstream–downstream transfer.  
 Following Cudennec et al. (2004), within the channelized path, the “ith order 
component” is defined as the part run through successive channels of the same order i 
(Fig. 1(c) and 1(d)). By definition, for any geographic point of the basin, the hydraulic 

length is the sum ∑
=

=
n

i
ilL

1

 where n is the basin order and li the length of the ith order 

component.  
 Furthermore, the network scaling is assumed to apply to the components. Thus, 
besides Horton’s stream length ratio RL, the component length ratio iil llr /1+=  is 
defined, where il  is the mean length of the ith order components. pdf(L) and pdf(li) are 
studied as structural functions, at the levels respectively of the whole network and of 
the Strahler levels. Moreover, in order to study subsets of the whole Strahler cascade, 

truncated hydraulic lengths ∑
<

=
=

nm

i
ilL

1
' are also considered for various values of m, as 

well as the corresponding functions pdf(L′). For a given basin, all these variables and 
functions are observable through a dedicated GIS-based analysis.  
 
 
EVIDENCE OF A MULTI-LEVEL AND MULTI-SCALE STRUCTURE 
 
A set of evidence of an underlying regularity has been shown for actual networks 
which respect a strong self-similarity (Cudennec et al., 2004). Here we consider the 
Skhira basin in semiarid central Tunisia (Fig. 2) (see Cudennec et al., 2005). The outlet 
coordinates are 35°44′15 N and 9°23′05 E in UTM system, the basin surface area S is 
192 km2 and the Strahler order n is 6. The river network was observed from 1:50 000 
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Fig. 2 River map of the Skhira basin (S = 192 km², n = 6) and of sub-basins 1, 2 and 3 
(respectively S = 123 km², n = 6; S = 15 km², n = 5; S = 12 km², n = 3). 

 
 
topographic maps. Three sub-basins are also considered in order to cross-study the 
influence of size, Strahler order and branching rules. 
 
 
Basin-level observations 
 
Table 1 presents the observed values of the Horton ratios RB and RL and of the newly 
defined component length ratio rl. The global values are obtained by logarithmic 
regressions, whose R² coefficients are indicated. It appears that the Skhira basin 
respects a weak self-similarity: the quality of regressions is good for RB for each basin, 
whereas it is very variable for RL and rl. The quality increases from the whole basin to 
sub-basin 1, over the same range of Strahler orders (1 to 6). Further than the size, this 
is related to the length of the stream of order n = 6. Furthermore, when focusing on 
smaller sub-basins, the quality either remains equivalent (sub-basin 3) or becomes very 
low (sub-basin 2). This variability of ratio values and stabilities is caused by the 
heterogeneity of geographic constraints and thus of the river network itself (see Fig. 2). 
It appears, nevertheless, that ratios of acceptable stability can emerge at certain 
aggregative levels and sizes (e.g. sub-basin 1) despite the heterogeneous quality of 
subsets. Moreover, it appears (Table 1) that the values of RL and rl, as well as the 
quality of the related regressions, behave similarly.  
 Figure 3 shows pdf(L) of the four nested basins. Despite the big differences 
between the basins, the four functions are irregular and broadly positively skewed, 
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Table 1 Assessment of Rc, RL and rl ratios for the four basins. 

Order i – i+1  
1–2 2–3 3–4 4–5 5–6 

Global R² 

RB 6.95 5.46 3.85 2.64 1.1 3.88 0.996 
RL 0.52 1.61 1.89 2.4 3.72 1.98 0.965 

Skhira  basin 
S = 192 km² 
n = 6 rl 0.72 1.6 1.9 1.76 3.6 1.88 0.88 

RB 6.49 5 3.47 2.3 1.1 3.47 0.993 
RL 0.49 1.45 1.63 2.39 2.82 1.79 0.98 

sub-basin 1 
S = 123 km² 
n = 6 rl 0.68 1.4 1.45 2.08 2.6 1.7 0.96 

RB 4.34 2.94 1.61 0.7  2.73 0.97 
RL 1.13 3.19 0.25 10.46  1.46 0.43 

Sub-basin 2 
S = 15 km² 
n = 5 rl 0.89 4.04 0.19 17.33  1.44 0.35 

RB 5.14 7    6.19 0.997 
RL 1.75 5.77    2.82 0.9 

Sub-basin 3 
S = 12 km² 
n = 3 rl 2.49 3.43    2.83 0.991 
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Fig. 3 pdf of hydraulic length L of the Skhira basin and the three sub-basins. 

 
 
which is relevant with the generic skewness of width functions (see Rodriguez-Iturbe 
& Rinaldo, 1997). Moreover, it is verified that they are directly linked with the size of 
the basin and not with its Strahler order. 
 
 
A multi-level underlying pattern 
 
We observe how pdf(L) is structured and organized in terms of components. 
Figures 4(a), 5(a), 6(a) and 7(a) present the pdfs of the lengths of the components of 
the nested basins, reduced by rl used as a scaling factor: 1/ −i

li rl . The n-2 first curves 
are very close together, convex and rapidly decreasing, for each basin. This shows that 
the scaling of the components is verified in terms of distribution, in an even better way 
than in terms of geometric averages. The (n-1)th curve is more or less within the 
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envelop of the others, whereas the nth one is very different. This shows a difference in 
the role and the representativeness of the highest order components, due to their 
particular hierarchical positions. Indeed the last order n is unavoidable for channelized 
paths from anywhere in the basin to the unique outlet (See Fig. 1(c) vs 1(d)). Thus 
pdf(ln) can necessarily not be decreasing. A similar—but statistically decreasing—
effect may exist for the (n-1)th component, and maybe even further upstream, depen-
ding on the particular branching of the basin considered. Consistently, and stressing 
the use of rl as a scaling factor, it appears that Figs 4(a), 5(a), 6(a) and 7(a) show:  
(a) the generic scaling of components under a “hierarchical constraint”; (b) a combined 
size and topological effect through both the shape and maximum abscissa of pdf(ln) 
(e.g. l6 in Figs 4(a) and 5(a)) and the number of Strahler levels (e.g. 5 in Fig. 6(a) and 3 
in Fig 7(a)).  
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Fig. 4 The multi-level structure of the Skhira basin. (a) pdf of reduced lengths of 
components 1/ −i

li rl  
(rl  = 1.88, classes of 200 m). (b) pdf of truncated hydraulic
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Fig. 5 The multi-level structure of the sub-basin 1. (a) pdf of reduced lengths of 
components (rl = 1.7, classes of 200 m). (b) pdf of truncated hydraulic lengths L′. 
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Fig. 6 The multi-level structure of the sub-basin 2. (a) pdf of reduced lengths of 
components (rl = 1.44, classes of 200 m). (b) pdf of truncated hydraulic lengths L′. 
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Fig. 7 The multi-level structure of the sub-basin 3. (a) pdf of reduced lengths of 
components  (rl = 2.83, classes of 200 m). (b) pdf of truncated hydraulic lengths L′. 
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hydraulic lengths L′ display more and more regular unimodal and negatively skewed 
shapes, whereas pdf(L) is irregular and positively skewed. It is shown here that these 
structural evidences can be identified even for a basin whose self-similarity is weak, 
due to geographic heterogeneities; it was deliberately chosen in order to face non-ideal 
contexts, in coherence with the PUB framework. The relationships between the scaled 
characteristics through the Strahler cascade, the regular underlying emerging patterns 
and the irregular geomorphometric function at the level of the whole basin, may be 
further understood and assessed in terms both of an analytical framework of deducible 
emergence, and of generality through scales and geographic heterogeneity. Moreover, 
the hydrological meaning of the variables and functions considered could open various 
modelling prospects, particularly in the framework of geomorphology-based transfer 
functions, within which new junctions between approaches based on branched 
topology and on geomorphometric functions could be identified (see Snell & 
Sivapalan, 1994; Robinson et al., 1995; Rinaldo & Rodriguez-Iturbe, 1996). 
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