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Abstract In order to help the hydrological regionalization, the analysis of 
precipitation and runoff data was done through the wavelet transform. This 
analysis seeks to help water administration personnel to take decisions on 
Predictions in Ungauged Basins, providing more details concerning the infor-
mation about the precipitation and runoff patterns within a region. Data from 
rainfall and runoff stations in Piranhas-Açu River basin, located in semiarid 
northeastern Brazil, were used and the wavelet transforms were applied to 
these time series in order to determine zones within the region. In spite of the 
rainfall wavelet power spectra showed to be very similar, the global wavelet 
spectra of the main frequency components of the stream flow time series 
revealed different patterns. A total of 12 rainfall and runoff time series were 
assessed and their global wavelet spectra, together with the band scale-average 
time series, can be considered useful for determining the hydrological zones 
within a region. 
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INTRODUCTION 
 
The wavelet transform is a recent advance in signal processing that has attracted much 
attention since its theoretical development in 1984 by Grossman & Morlet (1984). Its 
use has increased rapidly as an alternative to the Fourier transform in preserving local, 
non-periodic, multiscaled phenomena, and it has advantages over classical spectral 
analysis, because it allows analysis of different scales of temporal variability and it 
does not need a stationary series (Smith et al., 1998). Thus, it is appropriate to analyse 
irregular distributed events and time series that contain nonstationary power at many 
different frequencies. Several applied fields are making use of wavelets, such as 
astronomy, acoustics, data compression, and nuclear engineering (Farge, 1992; Graps, 
1995; Torrence & Compo, 1998). Although, the application of wavelet transform is not 
frequently used in hydrology, their use is also increasing, e.g. to help basin character-
ization (Smith et al., 1998; Gaucherel, 2002) and in the study of hydrological regime 
variability (Labat et al., 2004). 
 Hydrological regionalization, i.e. information transfer to sites without flow records 
using the available flow records within the same region, is usually done for mean 
annual flow or mean annual flood, intended to be used for design or planning purposes. 
Recently, however, there is an increasing demand for information to be used for 
operation and management of water systems. Instead of long-range averages, the need 
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now is for information, produced in real time, at the space and time variability of the 
hydrological regime.  
 Piranhas-Açu River, located in semiarid northeastern Brazil, flows through the 
States of Paraíba and Rio Grande do Norte. The management of its waters is one 
problem that demands such information, due to the usually high potential for conflicts 
and to the frequent difference in monitoring information availability among the several 
sub-basins involved. Water management between these two Federal States is a difficult 
task, due to the low available stream flow. Hydrological regionalization is a necessary 
tool in the basin, in order to help the decision making process. However, regionaliza-
tion is complicated because the rivers, although located within the same basin, can 
present different stream flow characteristics, not easily detectable (with standard 
statistical tools) due to the similarity of the hydrological regime. Thus, the application 
of wavelet analysis is done in order to help determining the hydrological zones within 
the region. 
 Meteorological forecasts with reasonable skill offer useful information of rainfall 
estimation with antecedence ranging from some days to one year. The operational 
hydrology challenge is the estimation of seasonal, monthly or daily discharge in an 
ungauged basin, taking advantage of the rainfall forecasts, and also using available 
regional hydrological information. One major problem for performing these estimates 
is that the flow record includes signals of different frequencies, caused by diverse 
geophysical phenomena. The following sections describe the wavelet transformation, 
the selected data, and then the application of wavelet to such data using the program 
developed by Torrence & Compo (1998) in order to use the global wavelet power 
spectra in the hydrological regionalization process. 
 
 
WAVELET TRANSFORM 
 
Mathematical transformations are applied to signals to obtain further information from 
that signal that is not readily available in the raw signal. There are several transforma-
tions that can be applied, among which the Fourier transforms are probably by far the 
most popular.  
 Wavelet analysis maintains time and frequency localization in a signal analysis by 
decomposing or transforming a one-dimensional (1-D) time series into a diffuse 2-D 
time–frequency image simultaneously. Then, it is possible to get information on both 
the amplitude of any periodic signals within the series, and how this amplitude varies 
with time. 
 An example of a basic wave or mother wavelet, as it is known in the literature, is 
the Morlet wavelet. This wavelet has the advantage of incorporating a wave of a 
certain period, as well as being finite in extent. Assuming, for example, that the total 
width of this wavelet is about 10 years, it is possible to find the correlation between 
this curve and the first 10 years of the time series. This single number gives a measure 
of the projection of this wave packet on the data during the period, i.e. how much 
amplitude does this 10-year period resemble a sine wave of this width frequency. By 
sliding this wavelet along the time series, a new time series of the projection amplitude 
vs time can be constructed. Finally, the scale of the wavelet can be varied by changing 
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its width. In continuous time, but on a finite interval, the Morlet wavelet is defined as 
the product of a complex exponential wave and a Gaussian envelope: 
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where Ψ0(η) is the wavelet value at non-dimensional time η, and ω0 is the non-
dimensional frequency, equal to 6 in this study in order to satisfy the admissibility 
condition; i.e. the function must have zero mean and be localized in both time and 
frequency space to be admissible as a wavelet. This is the basic wavelet function, but 
now some way will be needed to change the overall size as well as slide the entire 
wavelet along in time. Thus, the scaled wavelets are defined as:  
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where s is the dilation parameter used to change the scale, and n is the translation 
parameter used to slide in time. The factor of s-1/2 is a normalization to keep the total 
energy of the scaled wavelet constant. We are given a time series X, with values of xn, 
at time index n. Each value is separated in time by a constant time interval δt. The 
wavelet transform Wn(s) is just the inner product (or convolution) of the wavelet 
function with the original time series:  
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where the asterisk (*) denotes complex conjugate.  
 The above integral can be evaluated for various values of the scale s (usually taken 
to be multiples of the lowest possible frequency), as well as all values of n between the 
start and end dates. A 2-D picture of the variability can then be constructed by plotting 
the wavelet amplitude and phase. Then, a time series can be decomposed into time-
frequency phase space using a mother wavelet. 
 A significance level can be drawn in the same figure, using a red-noise 
background spectrum. Many geophysical time series can be modelled as either white-
noise or red-noise. A simple model for red-noise is the univariate lag-1 autoregressive 
process. The lag-1 is the correlation between the time series and itself, but shifted (or 
lagged) by one time unit. In this present case, this would be a shift of one month or one 
day. The lag-1 measures the persistence of an anomaly from one month (or day) to the 
next. The true lag-1 α can be computed by an approximation using α = (α1+α2

1/2)/2, 
where α1 is the lag-1 autocorrelation and α2 is the lag-2 autocorrelation, which is the 
same as lag-1 but just shifted by two time units instead of one.  
 The null hypothesis is defined for the wavelet power spectrum as assuming that the 
time series has a mean power spectrum; if a peak in the wavelet power spectrum is 
significantly above this background spectrum, then it can be assumed to be a true 
feature with a certain percent confidence. For definitions, “significant at the 5% level” 
is equivalent to “the 95% confidence level,” and implies a test against a certain 
background level, while the “95% confidence interval” refers to the range of 
confidence about a given value. The 95% confidence implies that 5% of the wavelet 
power should be above this level. More details can be found in Santos et al. (2001). 
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SELECTED DATA 
 
Northeastern Brazil has an area of 1 552 619.2 km2. In climatic terms, northeastern 
Brazil can be considered as a complex area, not due to the variation in the 
temperatures, but due to the variation of the rainfall amounts and distribution. The 
mean temperatures vary between 23 and 27°C, with minimum temperatures during 
winter around 5 and 10°C and maximum ones in summer between 30 and 40°C. In 
order to apply wavelet analysis to the identification of similarities and differences 
among the hydrological regime of the basins, 12 sub-basins with available mean daily 
runoff and total monthly rainfall records were selected from the so-called Sub-basin 
37, part of the national hydrological network (Fig. 1). The selected sub-basins are 
Angicos, Upanema, Augusto Severo, Pedra de Abelhas, São Fernando, Sítio Volta, 
Pau dos Ferros, Serra Negra do Norte in Rio Grande do Norte State, and Antenor 
Navarro, Aparecida, Piancó and Emas in Paraíba State. Although the rainfall time 
series ranges from 15 to 76 years, the duration of the runoff time series are variable, 
unfortunately, ranging from 6 to 40 years. Variables describing the above sub-basins 
are available, e.g. catchment areas, channel slopes and length of channels.  
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Fig. 1 Location of sub-basin 37 in northeastern Brazil with the 12 selected sub-basins. 
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DATA ANALYSIS 
 
Total monthly rainfall and mean daily runoff discharge data are used for the analysis. 
The parameters for the rainfall wavelet analysis are set as the time interval δt = 1 
month, the start scale s0 = 2 months, the scale width δj = 0.25, which will do 4 sub-
octaves per octave, and there will be 9 powers-of-two, and for the runoff wavelet 
analysis they are set as δt = 1 day, s0 = 2 days, δj = 0.25, and there will be 11 powers-
of-two (2, 4, 8, 16, 32, 64, ..., 2048). 
 
 
Wavelet power spectrum 
 
Since all data from the selected rainfall raingauges showed similar wavelet power 
spectra, only the case of Angicos sub-basin is depicted herein. Figure 2(a) shows the 
raw data of the total monthly rainfall at Angicos raingauge from 1911 to 1987 and  
Fig. 2(b) shows the power (absolute value squared) of the wavelet transform for the 
total monthly rainfall. The (absolute value)2 gives information on the relative power at 
a certain scale and a certain time. This figure shows the actual oscillations of the 
individual wavelets, rather than just their magnitude. Observing this figure, the 
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concentration of power can be easily identified in the frequency or time domain. For 
example, an annual frequency can be observed from 1911 to 1987 with power reduc-
tion from 1925 to 1935 and from 1965 to 1975, and more two frequency components 
are presented, one is a semidecadal frequency from 1945 to 1955 and another one is a 
32-year frequency from 1940 to 1960. The cross-hatched region in this figure is the 
cone of influence, where zero padding has reduced the variance. Because we are 
dealing with finite-length time series, errors will occur at the beginning and end of the 
wavelet power spectrum (Santos et al., 2001). 
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Fig. 3 Global wavelet power spectra for the 12 selected sub-basins. 
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 The lag-1 for all rainfall wavelet analyses are very close to 0.4, then the time series 
are modelled as white-noise. However, for the runoff wavelet analysis, the lag-1 are 
much larger than 0.4 and, thus, these time series are modelled as red-noise, as 
indicated later in each figure. 
 
 
Global wavelet power spectrum 
 
Global wavelet power spectra are obtained by the time-average of power over time and 
together with the confidence level, they can confirm the main component frequencies 
of the time series. The studies rainfall time series showed annual frequencies (perio-
dicity at 12 months) and the main component frequencies of the runoff data are 
confirmed by this time-average of power over time (Fig. 3), which shows the signif-
icant peaks above the 95% confidence level for the global wavelet spectrum, assuming 
red-noise, represented by the dashed lines. These global wavelet spectra provide an 
unbiased and consistent estimation of the true power spectrum of the time series, and 
thus it is a simple and robust way to characterize the time series variability. Global 
wavelet spectra should be used to describe the runoff variability in non-stationary 
hydrographs. For regions that do not display long-term changes in hydrograph 
structures, global wavelet spectra could be useful for summarizing a region’s temporal 
variability and comparing them with runoff in other regions. 
 
 
Scale-average time series 
 
The scale-average wavelet power is a time series of the average variance in a certain 
band. In the case of Figs 4 and 5, they are the semi-annual, annual and biennial bands 
for the Piancó sub-basin in Paraíba State and Serra Negra do Norte sub-basin in Rio 
Grande do Norte Sate, respectively. The scale-average wavelet power is used to 
examine modulation of one time series by another, or modulation of one frequency by 
another within the same time series. These figures are made by the average of the 
wavelet power spectra over all scales between the selected bands and they show a 
measure of the average year variance vs time. 
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Fig. 4 Scale-average wavelet power for Piancó in Paraíba State over the (a) 128–256-
day, (b) 256–512-day and (c) 512–1024-day bands. The dashed lines are the 95% 
confidence level assuming red-noise α = 0.75. 
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Fig. 5 Scale-average wavelet power for Serra Negra do Norte in Rio Grande do Norte 
State over the (a) 128–256-day, (b) 256–512-day and (c) 512–1024-day bands. The 
dashed lines are the 95% confidence level assuming red-noise α = 0.76. 

 
 
 The distribution in time of the average variance of the signal can show which 
events are responsible for the peaks revealed in the global wavelet power spectra. For 
the studied basins, the results are similar to those of Figs 4 and 5, which depict the 
cases of Piancó (Fig. 4) and Serra Negra (Fig. 5), where the number of events with 
significant variance reduces with the reduction of the frequency. For Piancó, no event 
had significant variance in the biennial frequency. In a forecasting study, different 
models could be used for adjusting those events/periods corresponding to different 
frequency range. 
 
 
DISCUSSION 
 
This region is characterized by a semiarid climate, with the rainy season concentrated 
between February and May with the usual passage of the Inter-tropical Convergence 
Zone (ITCZ). Thus, it is natural that the semiannual frequency (periodicity at 182 
days), annual frequency (periodicity at 365 days) present high values. However, this 
average situation can be disturbed a few times per-decade with the occurrence of the 
El-Niño phenomena and possible associated sea surface anomalies in the tropical 
Atlantic ocean. During these years, the precipitation regime in this hydrological basin 
(and throughout most of northeastern Brazil) can be highly perturbed with significantly 
less precipitation. These situations are responsible for high values of power spectrum 
in the semidecadal frequency (periodicity at 1825 days). Trends and decadal 
frequencies (periodicity at 3650 days) of this time series are confirmed by a time-
average of power over time (Fig. 3), which shows the significant peaks above the 95% 
confidence level for the global wavelet spectrum, assuming red-noise, represented by 
the dashed lines. Although, the series show a decadal peak above the 95% confidence 
level, it corresponds to the power concentration within the cross-hatched region, where 
zero padding has reduced the variance. 
 All the runoff time series studied showed annual frequencies, but different to the 
rainfall time series, some of them presented semiannual and/or semidecadal 
frequencies, and these patterns can be used to determine the similar hydrological zones 
within the basin. 
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CONCLUSIONS 
 
In order to study the variability of the total monthly rainfall and daily runoff time 
series in Piranhas-Açu River basin in northeastern Brazil, wavelet analysis was 
applied. The rainfall wavelet power spectra showed big power concentrations between 
the 8- to 16-day bands for all the sub-basins studied, as exemplified by the series of 
Angicos in Fig. 2, revealing an annual periodicity of such events. However, some 
breaks are observed in some year intervals (1925–1935 and 1965–1975), and 
semidecadal and 32-year frequencies are identified for the periods of 1945–1955 and 
1940–1960, respectively. Periods with low variance in the 8- to 16-month band were 
identified, which are coincident with one of the major droughty events in that semiarid 
region of Brazil. 
 The modulation in separated periodicity bands (semiannual, annual and biennial 
bands) were done in order to extract additional information; e.g. the annual band was 
examined by an average of all scales between 256 and 512 days, giving a measure of 
the average daily variance vs time, where the periods with low or high variance could 
be identified. These time series could also be used instead of the original series in a 
forecasting study, where different models could be used for adjusting events 
corresponding to the selected time series. Finally, the main frequency components in 
the stream flow time series were studied with the global wavelet spectra, revealing 
how the stream flow frequency of each river is composed. Rivers within the same 
basin can present different stream flow characteristics, not easily detectable due to the 
similarity of the hydrological regime. Thus, the application of wavelet analysis could 
reveal those differences and help to identify significant frequency signals within the 
series, which is useful to determine the hydrological zones within a region. 
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