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Abstract Three-dimensional steady flow towards a fully penetrating well of 
radius rw, in a confined aquifer, is studied by means of a finite-volume 
numerical scheme. The hydraulic conductivity K is modelled as an axi-
symmetric, stationary random space function mimicking hydraulic property 
variations at the local scale. We develop a new methodology for the identi-
fication of the geostatistical model of variability from a steady-state pumping 
test involving a few wells. A constant water discharge is extracted from each 
well in sequence while measuring the steady-state drawdown at the remaining 
wells. To show its potential, the new methodology is applied to the data set 
obtained from a synthetic example. We conclude that the new methodology 
may serve as a simple tool to assess the three-dimensional statistical structure 
of hydraulic conductivity at the local scale. 
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INTRODUCTION 
 
Flow towards a pumping well has been the subject of several studies in recent years 
due to its importance in many applications of groundwater hydrology, such as ground-
water supply, restoration of contaminated groundwater and identification of hydro-
geological parameters, to mention a few. Most of these studies were conducted under 
the common assumption that the aquifer is homogeneous, and the result of such efforts 
is a large number of solutions for several hydrogeological and experimental conditions 
which are widely used in applications. However, the flow field is much more complex 
than predicted by the above solutions because the Earth’s subsurface is inherently 
heterogeneous (see e.g. Rubin, 2003). Recently, a number of solutions were obtained 
assuming that hydraulic property variations can be modelled assuming the hydraulic 
log-conductivity Y = lnK, where K is the hydraulic conductivity, is a stationary 
Random Space Function (RSF) and adopting small perturbation expansion in the log-
conductivity variance in order to obtain close-form solutions. We focus here on the 
three-dimensional local-scale flow towards an extracting well in a heterogeneous 
formation due to the importance that this problem assumes in aquifer characterization. 
The problem has been studied in the past mainly for weakly heterogeneous formations 
(e.g. Shvidler, 1966; Naff, 1991; Desbarats, 1994; Indelman et al., 1996; Sanchez-
Vila, 1997; Tartakovsky & Neuman, 1998; Fiori et al., 1998; Hemker, 1999; Riva et 
al., 2001; Guadagnini et al., 2003; Indelman, 2003). The principal aim here is to 
explore whether the identification of the geostatistical model of variability is possible 
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by using the head measurements in fully penetrating wells. We use the analytical 
solution for the equivalent conductivity obtained by Indelman et al. (1996) and a three-
dimensional numerical scheme for solving the flow equation. A synthetic example 
showing the potential of the proposed methodology closes the paper. 
 
 
THE MATHEMATICAL FRAMEWORK 
 
Interpretation of the drawdown caused by a pumping well by means of a flow model is 
the most widespread approach for aquifer characterization. The typical configuration 
for a pumping test requires a well extracting at constant discharge and an observation 
well at a known distance from the extraction well. Both the wells are assumed to fully 
penetrate the aquifer. In the standard procedure for aquifer characterization, the 
hydraulic conductivity is obtained by fitting a suitable analytical solution to the experi-
mental data. The resulting K value represents the hydraulic conductivity of a fictitious 
homogeneous aquifer producing at the monitoring well the same drawdown as the real 
aquifer. It is defined over a support volume whose size is much larger than the Darcy’s 
scale. This has motivated Matheron (1967) to define the equivalent conductivity Keq as 
the hydraulic conductivity obtained by inverting the Thiem equation:  

])()([2
)/ln(

><−><π
=

w

w
eq rhrhD

rrQK
 (1) 

where r and rw are the distance from the extraction well and the well radius, respectively. 
Furthermore, Q is the total discharge, D is the aquifer depth and <h(r)> the mean 
piezometric head at the distance r from the extraction well. The resulting equivalent 
conductivity Keq is a global property characterizing the portion of the aquifer between 
the well and a cylinder of radius r co-axial with the vertical axis of the extraction well.  
 Here we model the hydraulic log-conductivity Y = lnK, as a normally distributed 
RSF with mean <Y> and variance σY

2 both constant, and the axisymmetric exponential 
two-point covariance function adopted by Gelhar & Axness (1983) to model hydraulic 
property variations at the local scale:  
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where IYh and IYv are the horizontal and vertical log-conductivity integral scales, 
respectively, and ρ(ρx, ρy, ρz) is the two-point distance vector. A first-order approx-
imation in 2

YY σ=σ  of the equivalent conductivity Keq for this model of spatial 
variability was obtained by Indelman et al. (1996) with the boundary condition of 
constant head at the extraction well which is modelled as a source line with flow rate 
proportional to the local conductivity:  

[ ] ),(),(1 erKerKK efuAeq λ+λ−=  (3) 

where λ is an analytical function, bounded between 0 and 1, the expression for which 
is given in Indelman et al. (1996). Equation (3) is formally valid for σY

2 << 1 and for 
rw/IYh << 1. Equation (3) shows that Keq varies between the arithmetic mean KA for r/IYh 
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<< 1 and Kefu for r/IYh >> 1, where Kefu is the effective conductivity for uniform flow. 
Equation (3) has been obtained under the hypothesis that the thickness D of the aquifer 
is much larger than YvI  such that ergodic conditions are obtained and KA converges to 

the expected value of the hydraulic conductivity: ]2/exp[ 2
YA YKK σ+><=><≅ . 

 
 
THE NUMERICAL MODEL 
 
A fully penetrating well extracting a constant water discharge Q is placed at the centre 
of a three-dimensional domain of sides L1 = L2 = 41IYh , in the horizontal plane and 
thickness D = 60IYv. A single realization of Y was generated using HYDRO-GEN 
(Bellin & Rubin, 1996), and the flow equation was solved numerically using the 
seven-node finite volume (FV) scheme (Anderson & Wossner, 1992). The log-
conductivity field was generated over a uniform grid with spacing 0.2IYh and 0.2IYv in 
the horizontal and vertical directions, respectively. The computational grid was 
uniform in the vertical direction with a spacing 0.2IYv, and non-uniform in the 
horizontal plane with spacing increasing from 0.04IYh at the extraction well to 0.2IYh at 
a distance of 0.8IYh from it. For larger distances, the grid spacing was kept constant and 
equal to 0.2IYh. Furthermore, the grid was designed to respect the condition that the 
ratio between the sides of two surrounding cells should not be larger than 1.5 
(Anderson & Wossner, 1992, p.64). The numerical code was tested by comparison 
with the Thiem solution for the homogeneous case. 
 In the FV scheme the well is represented by blocks aligned along its axis. Under 
common operational conditions the water head hw does not change along the well 
column because the head loss inside the casing is negligible. We model this situation 
by assuming that the water flux at each cell of the well is proportional to the local con-
ductivity (see Indelman et al., 1996); the condition is applied in a discrete form sub-
dividing Q between the N blocks of the well in proportion to the hydraulic conductivity 
of the block: KQKQ jj /= , where Qj is the water discharge extracted from the block 

j, with hydraulic conductivity Kj, and ∑ =
=

N

j j NKK
1

/  is the vertically-averaged 

hydraulic conductivity at the well. After a best fit with the Thiem’s curve, the equiv-
alent well radius, rw (Anderson & Woessner, 1992) was found to equal 7.85 × 10-3IYh.  
 
 
THE IDENTIFICATION PROBLEM 
 
We are interested in a simple inverse procedure for the identification of the model of 
spatial variability, which here assumes the form of equation (2). Thus, our main 
objective is the characterization of the formation’s heterogeneity at the local scale, in 
the terminology of Dagan (1989). Assuming second-order stationarity, the parameters 
that characterize the geostatistical model of variability (equation (2)) are: KG, σY

2, IYh, 
and IYv. We envision a simple inverse procedure which takes advantage of the fact that 
the vertically averaged head )(rh , as measured in a fully penetrating monitoring well, 
depends on Keq from equation (1), and that in turn the resulting Keq depends on the 
geostatistical models of variability and the distance of the monitoring well from the 
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extraction well, as described by equation (3). The procedure for obtaining Keq is the 
same used for the inference of K in a homogeneous confined aquifer. Under the 
stationary and ergodic hypotheses, the mean head h  is a deterministic quantity, and 
the response of the aquifer to pumping in terms of mean head is the same at all the 
locations with the same distance r from the extraction well.  
 The inference proceeds as follows: first h  is recorded at several distances from the 
extraction well, and Keq is computed by solving equation (1). Then the parameters KG, 
σY

2, IYh, and IYv are obtained by best fitting equation (3) to the inferred Keq values.  
To illustrate the inference procedure, we simulated synthetically a pumping test 

with Nw wells, located at a relative distance rij (i.e. the radial distance from well i to 
well j). A constant water discharge is extracted from one of the wells and the head is 
measured at the remaining wells. The procedure is then repeated, changing the 
extraction well in such a way as to obtain Nm = Nw (Nw – 1)/2 independent measure-
ments of h . 
 For this illustration, we assume that the aquifer parameters are of the same order of 
magnitude as those of the Borden aquifer, (Sudicky, 1986), that is KG = 10-4 m s-1,  
σY

2 = 0.5, IYh = 3 m, e = 0.1. We assume three experimental setups with Nw = 4, 5, 7 
wells as indicated in Fig. 1, for a total number of independent mean head measure-
ments of Nm = 6, 10, 21. Each set is obtained from the previous one by eliminating the 
well labelled with the highest number (see Fig. 1). The well locations are generated 
randomly by selecting a set-up that produces a roughly uniform distribution of the 
distances rij in an area of approximately 40 × 60 m2. The mean head is calculated 
through our numerical solution, and is a function of the relative well distance rij. The 
 
 

   
Fig. 1 Well set-up: each set is obtained from the previous one by eliminating the wells 
with the highest number. 
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first-order solution of Keq as given by equation (3) is then fitted to the values of Keq 
inferred from the pumping tests, and the result is shown in Fig. 2. 
 The parameters estimated through the fitting procedure for Nw = 7 are as follows 
(the number in parenthesis is the standard error of the estimate): KG = 1.032 × 10-4 
(0.156 × 10-4) m s-1, σY

2 = 0.473 (0.307), IYh = 4.059 (0.855) m, e = 1.0 (1.86). With 
the exception of IYh which is overestimated by about 35%, and e, the estimated 
parameters are close to the exact ones. The estimate of e is error prone, and we also 
found similar problems after changing the other parameters. The principal reason of 
the bias in the inferred e is the scarce sensitivity of λ to e, which reflects negatively on 
the estimate yielding a relatively flat objective function. This is further highlighted by 
the large standard error of the estimate. The limited dependence of λ on e is also felt 
by the other parameters, and in particular σY

2, and IYh, which are also characterized by 
relatively large standard errors; the estimate of KG is more robust. 

Results for the other cases are as follows: for Nw = 4, KG = 0.749 × 10-4 (8.533 × 
10-4) m s-1, σY

2 = 1.384 (23.792), IYh = 0.162 (0.0006) m, e = 0.440 (21.410); for Nw = 
5, KG = 1.025 × 10-4 (0.021 × 10-4) m s-1, σY

2 = 0.493 (0.035), IYh = 3.708 (3.324) m,  
e = 1.0 (9.170). It is seen that the procedure roughly stabilizes after five pumping wells 
(10 head measurements available). The poor behaviour of the N = 4 set-up is mainly 
due to the small number of independent measurements available for small/intermediate 
distances rij, which leads to an incorrect prediction of the horizontal integral scale. We 
note once again the large standard error of e, which confirms its unreliable estimate.  
 To further investigate the origin of the low sensitivity of Keq from e we consider 
the following large distance (r/IYh >> 1) asymptotic limit of λ (Indelman et al., 1996): 

)/ln(/)/ln( wYh rrrr≈λ . Substituting this expression into equation (3) we obtain: 
)/ln(/21 weq rrCCK += , with efuKC =1  and ))(/ln(2 efuAwYh KKrIC −=  which is 

 
Fig. 2 Fitting of the first order solution of Keq inferred from the pumping test. 
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independent from e and varies linearly with )/ln(/1 wrr . Thus, the four parameters are 
embedded in the two coefficients C1 and C2, and two out of the four parameters have to 
be estimated independently. The use of the complete expression for λ permits the 
solution of the mathematical problem, because of the dependence of λ on e (unfor-
tunately a weak one), at the expense of an increased standard error and an uncertain 
and error-prone prediction of the anisotropy ratio. 
 Despite the above problems, the simple fitting procedure leads to reasonable 
estimates of the other three parameters, in particular KG and σY

2, which are probably 
among the most important parameters characterizing natural aquifers. The order of 
magnitude of the horizontal integral scale IYh is also well predicted, but the estimate 
here is more uncertain. In fact, the estimated IYh is shown to depend on the density of 
wells at short distances rij. In fact, IYh is inversely proportional to the slope of (1 − λ) at 
r → 0, and an insufficient number of measurements at small/intermediate distances rij 
may lead to an uncertain estimate of IYh. Despite the above and other limitations, we 
consider our simple methodology as a promising tool for the characterization of 
hydraulic conductivity at the local scale. 
 
 
CONCLUSIONS 
 
A simple inverse procedure for the identification of the geostatistical parameters that 
define spatial variability at the local scale, was presented. The method consists in the 
best fit of equation (3) by the use of “observed” values from a synthetic pumping test 
obtained from a large, three-dimensional numerical model. Different well set-ups 
have been used in the parameter estimation procedure. The main results can be listed 
as follows: 
− for each well configuration, the estimate of the formation anisotropy ratio e is 

error prone because of the scarce sensitivity of the function λ (as it appears in 
equation (3)) to e, which reflects negatively on the estimate, yielding a relatively 
flat objective function; 

− the low sensitivity of λ on e influences the other parameters like σY
2 and IYh, 

which have also a large standard deviation; 
− the estimate of the geometric mean of hydraulic conductivity KG is more robust; 
− the procedure roughly stabilizes when using a number of wells equal or larger 

than 5; 
− the estimates of the parameters KG, σY

2 and IYh seem reliable and are of the same 
order as the model parameters; we emphasize that the latter three parameters are 
among the most important ones for natural aquifer characterization. 
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