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Abstract The hydraulic conductivity of a phreatic aquifer, under the Dupuit 
assumption, can be determined by solving an inverse problem. If two stationary 
sets of data (heads and source terms) corresponding to different flow situations 
are available, the inverse problem can be solved with a simple modification of 
the differential system method. Numerical tests show the effectiveness of this 
method as well as the excellent results that can be obtained by applying it to 
multiple sets of stationary data; in this case different couples of sets of data 
can be used to identify conductivities in different subdomains. 
Keywords hydraulic conductivity; inverse problem; phreatic aquifer  

 
 
INTRODUCTION 
 
The differential system method (DSM) has been proposed to identify the 
phenomenological coefficients of physical systems which are modelled with the 
classical diffusion equation (Parravicini et al., 1995). Numerical applications to the 
identification of transmissivity, T, and storativity of a confined aquifer have been 
presented (Giudici et al., 1995; Vázquez González et al., 1997). Discussions of the 
stability of the method and of its link with upscaling are given by Giudici et al. (1998) 
and Lunati et al. (2001). 
 When applied to stationary conditions, the DSM requires two independent sets of 
data, ( ){ }2,1,, )()( =lfh ll , i.e. piezometric heads and source terms corresponding to two 
different flow situations. The data sets are independent if the hydraulic gradients are 
not parallel. 
 In the previous papers we showed how the DSM works for a confined aquifer. 
Here we extend it to the case of the steady flow in a phreatic aquifer, where the 
balance equations are nonlinear with respect to the piezometric head, and the physical 
parameter appearing in the equation is the hydraulic conductivity K. Moreover we 
modify the DSM to handle multiple sets of data, a procedure which cures the main 
difficulties of the method, namely the choice of the starting point and the apparent 
necessity of two sets of data that are independent all over the domain. 
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THEORY 
 
If the Dupuit approximation is valid, the physical parameter to be determined is K. 
Two independent sets of data are necessary, so that the following differential system 
can be written: 

( ) ( )

( ) ( ) )2(
)2(

)2(
)2(

)2(

)1(
)1(

)1(
)1(

)1(

f
y

hdhK
yx

hdhK
x

f
y

hdhK
yx

hdhK
x

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

 (1) 

where d is the height of the bottom of the phreatic aquifer, which is supposed to be 
known, and the unknown function to be determined is K. 
 The independence condition is the following: 

0det ≠A , with 
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 If the independence condition (2) is satisfied, then the differential system (1) can 
be written in the normal form: 

baKgradK +−=  (3) 

 If a value of conductivity, K0, is known at a point of the domain, x0, the procedure 
for the integration of equation (3) described, e.g. by Giudici et al. (1995), can be 
applied to find a solution to (1). The procedure requires the integration along an 
arbitrary line, e.g. a polyline, which connects the arbitrary point x to x0; the error 
propagation can be limited if the polyline is chosen in such a way that the integral of 
a  along the line is least. 

 
 
THE USE OF MULTIPLE SETS OF DATA 
 
One of the main difficulties for the application of the DSM is the choice of the starting 
point, x0. As a simple rule, the best choice is at a location where a  is small, so that the 
error propagation during the first steps of the integration is small. Another difficulty 
for the application of the DSM is the collection of two sets of data such that the 
independence condition (2) is satisfied all over the domain. In fact different 
independent sets of data can be created by different pumping schedules, which usually 
modify the flow field in a limited region around the pumping wells. 
 In order to cure these problems, we modify the DSM assuming that more than two 
sets of data are available, i.e. ( ))()( , mm fh , with 2,,1 >= Mm K . One might apply least 
squares techniques to compute the vectors a and b, thus using all the available data at 
the same time. This is not always satisfactory, though, as the sets of data might not 
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provide independent information in some regions of the aquifer. On the other hand, the 
selection of the “best” couple of data sets at each point among the  
possible couples is very important and successful. The “best” couple is that which at 
the same time makes: (i) large enough the determinant in the independence condition 
(2) and small enough both (ii) the value of |

( ) 2/1−MM

a| and (iii) the condition number of the 
matrix A that appears in equation (2). “Best” couples can be identified in different 
subdomains of the aquifer, so that the vectors a and b can be computed and the DSM 
can be applied with the standard procedure. 
 
 
NUMERICAL TESTS 
 
Some numerical tests are presented to show the effectiveness of the method for the 
computation of hydraulic conductivity of a synthetic phreatic aquifer. 
 The test data have been obtained from forward finite-difference modelling for the 
synthetic aquifer whose main features are described below. The reference K field is 
shown in Fig. 1; the domain is discretized with 51 × 51 cells; the aquifer bottom is 
assumed to be at sea level (d = 0). We assign Dirichlet boundary conditions in the form 

. A constant source term representing aquifer recharge is 
assigned at each cell of the finite difference grid (10

xyxh 005.050),( −=
-11 m³ s-1). 
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Fig. 1 Distribution of logK and well positions for the test aquifer. The grey scale on 
the right corresponds to the decimal logarithm of hydraulic conductivity (in m s-1). 
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 Ten sets of data have been obtained by changing the source terms; in particular 
nine wells have been considered at the positions shown in Fig. 1. Nine sets of data 
have been obtained by solving the forward problem when only one well at a time is 
pumping; the tenth set of data is computed when no well is active. The well discharge 
rates have been chosen in such a way to produce a drawdown of about 5 m in the wells 
with respect to the undisturbed condition. 
 The K field identified with all the sets of data is shown in Fig. 2. The couple of 
sets of data to be used to integrate (3) along an internode segment, i.e. the segment 
connecting two adjacent nodes, has been chosen in such a way as to minimize the sum 
of )cond(Aa ⋅  at the two nodes. The trend of the high K zone is clear, although the 
values of K at many cells cannot be computed because of numerical difficulties. 
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Fig. 2 Identified logK field. Black cells show the positions where K has not been 
computed due to numerical difficulties. 

 
 
 An improvement of the identified K field has been obtained by choosing the “best” 
couple at subdomains of 7 × 7 cells as the couple which minimizes the sum of 

)cond(Aa ⋅  over all the nodes of the subdomain itself. The K field identified with this 
block-wise choice of the couples of sets of data is represented in Fig. 3 and shows a 
good agreement with the reference K field (Fig. 1). 
 The high K area is identified from these results much better than from those based 
on a point-wise choice of the couple of sets of data. Moreover there is no problem for 
the computation of K, but at the border. It is also to be stressed that the starting point  
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Fig. 3 Identified logK field with block-wise choice of the couple of data sets to be 
used to compute the vectors a and b. 

 
 
has been chosen at the coordinates (1400,1400) arbitrarily, i.e. without applying the 
criteria proposed in previous papers. This was a critical aspect of the DSM; in fact, if 
the starting point were chosen in an area with high values of |a|, the identified K values 
would not be confident even at cells close to the starting point. 
 The following important remarks can be mentioned: (1) The couples of sets of data 
for which detA changes sign in the subdomain have been excluded, in order to 
guarantee the independence condition throughout the whole subdomain. This permits 
one to discard the couples involving the set of data corresponding to an active well in 
the subdomain; in fact the piezometric head has a minimum in correspondence of the 
well, a situation which causes several difficulties (Giudici et al., 1995). (2) The worst 
set of data seems to be the one obtained for the undisturbed condition, which does not 
permit one to obtain such a “great independence” as two sets of data corresponding to 
pumping wells at different positions. 
 
 
CONCLUSIONS 
 
Numerical tests show that the innovative approach proposed in this paper is useful to 
reduce the dependence of the final solution on the starting point, which can be assigned 
almost everywhere without degrading the results of the DSM. This is important for the 
applications, because we use in a suitable manner the available data sets and because 
the choice of the starting point is usually constrained by the availability of the results 
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of field tests and can rarely be based on the analysis of the vector a proposed in 
previous papers. 
 The justification of the improvement of the results when the choice of the couple 
of data sets is performed block-wise seems to be related to the fact that |a| and cond(A) 
show great variations among the nodes and the use of more nodes to compute the 
criteria for the choice of the couple can filter the variability at high wave numbers. 
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