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Abstract A groundwater flow model has been built for the Chobe region in 
Botswana. Due to the scarcity of conventional data, alternative sources of 
information have been explored. METEOSAT and NOAA-AVHR images 
have been used to estimate the spatial distribution of the water balance. This 
spatial distribution has been correlated to local chloride measurements from 
which the recharge rate could be estimated. A digital elevation model has been 
used as a constraint for the maximum local piezometric head values. Finally, 
geomagnetic data were used as an indication for the presence of faults. These 
data have been used together with a limited number of traditional data 
(hydraulic head and transmissivity measurements) in an inverse calibration 
procedure. In the inverse conditioning, equally likely realizations, consistent 
with all the measurements (transmissivity, hydraulic head, digital elevation 
model, satellite images, chloride measurements and geomagnetic data) have 
been generated. The objective function contains an extra constraint on a 
statistical basis that guarantees that the calibrated recharge rate pattern does 
not deviate too much from the estimated water balance using the satellite 
image. The study demonstrates the importance of the digital elevation model 
and the satellite information in improving the groundwater model of the site. 
Keywords conditioning; digital elevation model; geomagnetic data; inverse modelling;  
remote sensing; spatial patterns 

 
 
INTRODUCTION  
 
Groundwater flow modelling in semiarid regions in the third world is especially 
complicated because, as a rule, few data are available and the variability of recharge 
rates in time and space is very large. In order to build more reliable groundwater flow 
models for those areas, the value of alternative data sources has to be explored. 
Satellite images and geophysical images can provide exhaustive information over large 
areas. They can give imprecise information on geological structures and recharge rate. 
The information on geological structures can be related to the hydraulic conductivity. 
The advantage of this kind of information is that it is exhaustive, the disadvantage is 
that the data are associated with a large measurement error. This poses the question 
how can these data be used in the calibration of a groundwater model, and whether the 
data really yield an improvement of the groundwater flow model.  

In this paper it is shown that these exhaustive data can be used in the stochastic 
inverse calibration of a groundwater flow model. Multiple equally-likely realizations 



H. J. W. M. Hendricks Franssen et al. 
 
 

32

of transmissivity-recharge couples are calculated, which are conditioned to such 
exhaustive information, namely geomagnetic images, satellite images with water 
balance information and a digital elevation model. In addition, these realizations are 
conditioned to transmissivity measurements, hydraulic head data and recharge rate 
estimates based on the chloride method. This method was applied in the Chobe region 
in Botswana. 
 
 
STUDY AREA 
 
The major local geological and topographical features in the study area (the Chobe 
region in northern Botswana) are the Chobe flood plain, the Chobe forest reserve, the 
Mababe depression and the Kachikau fault. The Kachikau fault is close to the western 
and northern boundaries of the study domain. The Chobe flood plain is situated 
northwest of the fault and the Chobe forest reserve east of it. Both are flat areas. In the 
extreme southwest of the study region is the Mababe depression. The higher areas 
(hills) of the region are north of the Mababe depression and in the most eastern part of 
the study domain. 
 The following data are available from the area: 
– six transmissivity measurements; 
– 22 steady-state hydraulic head measurements; 
– 16 chloride measurements from which the recharge rate is estimated; 
– a digital elevation model; 
– METEOSAT images for the period 1995–2000 from which average precipitation 

(P) is estimated. NOAA-AVHRR images from which average evapotranspiration 
(ET) is estimated for the period 1990–2000; 

– geomagnetic images from which the location of faults is obtained. 
 
 
APPROACH 
 
The approach used is based on the sequential self-calibrated method. Gómez-
Hernández et al. (1997) detailed this method for the stochastic inverse modelling of  
2-D steady-state groundwater flow. Hendricks Franssen (2001) presented an extension 
of the methodology for the inverse modelling of 3-D transient groundwater flow 
(possibly in fractured media) and conservative mass transport. Hendricks Franssen et 
al. (2004) discuss the joint estimation of spatially variable transmissivities and 
recharge rates. In this study the following procedure has been followed: 
(1) 100 equally likely logtransmissivity (Y) realizations are generated, conditioned to 

the transmissivity measurements by GCOSIM3D (Gómez-Hernández & Journel, 
1993). The mean Y differs slightly between the four different geological zones 
(including the Kachikau fault). The variogram of Y had to be postulated due to the 
limited number of measurement data. An exponential model has been taken with an 
integral scale IY equal to 10 km and a sill σY

2 equal to 0.25. 
(2) 100 equally likely recharge rate (R) realizations are generated, on the basis of the 

chloride measurements and the estimated precipitation minus evapotranspiration 
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from the METEOSAT and NOAA-AVHR images. The realizations have been 
generated with the co-located co-simulation algorithm (Almeida & Frykman, 
1994). The advantage of this algorithm is that only the linear correlation coefficient 
between the two variables (the recharge rate estimated from the chloride measure-
ments and P – ET from the satellite images) is needed, and that the algorithm is 
especially suited for gridded secondary variables. The estimated linear correlation 
coefficient between the recharge rate estimated by the chloride method and the 
recharge rate estimated from the satellite images is 0.715 (Brunner et al., 2004). 
The recharge rate integral scale IR was estimated from the satellite images (P – ET) 
and found to be 100 km. The nugget and sill of the spherical recharge rate 
variogram were estimated from the chloride data and set equal to 36 and 394  
(mm year-1)2, respectively. 

(3) The generated Y and R realizations have been used as input to a groundwater flow 
model. Other input parameters to the groundwater flow model are the external 
stresses (wells). The boundaries are mostly impervious; at some parts prescribed 
heads are imposed. The hydraulic head solution is calculated by a finite difference 
scheme. An objective function is evaluated which contains multiple parts: (a) the 
sum of squared deviations between measured and simulated heads; (b) the sum of 
the squared deviations between the simulated piezometric head and the altitude (for 
all grid cells), in case the piezometric head value is larger than the altitude; and  
(c) a term that penalizes a too strong deviation of the pattern of the calibrated 
recharge rates from the P – ET satellite image. In order to formulate statistical 
bounds on the deviation from the satellite image, 10 000 recharge realizations were 
generated. 200 control points were randomly located on the simulation domain. A 
matrix of size 200 × 200 was built that contains the frequency that the recharge rate 
at a control point i is larger than the recharge rate at a control point j. The derived 
frequencies from the 10 000 realizations are therefore estimated probabilities. For 
each realization the sum of deviations from the mean pattern has been calculated: if 
for instance the probability that the recharge rate at control point 8 is larger than 
the recharge rate at control point 25 equals 0.7; and the generated recharge rate for 
a particular realization at control point 8 is larger than the generated recharge rate 
at control point 25, the contribution to the deviation sum is (1 – 0.7) = 0.3. If the 
generated recharge rate at control point 25 had been larger than the recharge rate at 
control point 8, this would give a contribution of 0.7. If for all 10 000 realizations 
the sum of deviations has been calculated, a 95% confidence interval on the sum of 
deviations can be constructed. The deviation from the pattern is penalized in such a 
way that calibrated recharge rate patterns that deviate largely from the P – ET 
image, give an important contribution to the objective function. 

(4) If the calculated objective function value is too large, the spatially variable 
recharge rate and transmissivity fields are modified. The objective function is 
minimized with respect to these optimization parameters. The perturbation of the 
recharge and transmissivity fields is parameterized by selecting a limited number 
of grid cells (the master blocks) in order to reduce the dimensionality of the 
optimization problem. 

(5) Step 2 is repeated. The iterative process stops if the objective function value is low 
enough, or if the maximum number of iterations has been reached. 
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Steps (1) to (5) are repeated for different scenarios, in order to investigate the 
impact of the inclusion of different pieces of information. Table 1 summarizes the 
different scenarios. 

For scenarios 1 and 2 the 22 steady-state head data were not used for conditioning. 
The transmissivity data and information on recharge rate (chloride data and satellite 
images) were used. The difference between scenarios 1 and 2 is that in scenario 2 the 
digital elevation model has been used as conditioning information (giving a constraint 
on the maximum piezometric head value). In scenarios 3 to 10, hydraulic head data are 
used for inverse conditioning. For scenarios 5 to 10 an additional constraint is included 
regarding the pattern of calibrated recharge rates. 

 
 
Table 1 The different scenario studied.  

Scenario Head data? DEM? Patterns? Faults? Many faults? 
1 No No No No No 
2 No Yes No No No 
3 Yes No No No No 
4 Yes Yes No No No 
5 Yes No Yes No No 
6 Yes Yes Yes No No 
7 Yes No Yes Yes No 
8 Yes Yes Yes Yes No 
9 Yes No Yes No Yes 
10 Yes Yes Yes No Yes 
 
 

For scenarios 7 and 8 geomagnetic information is used to determine the position of 
faults. These faults are treated as one additional geological zone. An alternative 
approach is to treat each fault as a separate geological zone. This is done in scenarios 9 
and 10 and gives rise to 19 additional zones (23 zones in total). 

For each scenario, ensemble statistics are calculated over the 100 conditioned 
realizations. The ensemble average transmissivity and recharge rate are calculated for 
each active grid cell, and also over all active grid cells. The ensemble standard 
deviation is evaluated by: 

∑
=

σ=
N

i
XiN

XAESD
1

1)(  

where AESD is the average ensemble standard deviation, X is recharge rate, 
transmissivity or hydraulic head, N is the number of active grid cells and σXi the 
standard deviation for recharge rate, logtransmissivity or hydraulic head for an active 
grid cell i. 
 
 
RESULTS 
 
Table 2 gives the ensemble statistics for the different scenarios. Given are the ensemble 
average log-transmissivity, the ensemble standard deviation of log-transmissivity, the 
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ensemble average recharge rate, the ensemble recharge rate standard deviation and the 
ensemble standard deviation of hydraulic head. 
 
 
Table 2 The calculated ensemble statistics for the different scenarios, given in Table 1.  

 Scenario Average Y 
log(m2 s-1) 

AESD(Y) 
log(m2 s-1) 

Average R 
(mm year-1)  

AESD(R) 
(mm year-1) 

AESD(h)  
(m) 

 1 –3.53 0.45 13.8 9.0 3083.6 
 2 –1.71 0.68 6.0 4.0 6.4 
 3 –2.31 0.74 9.0 5.4 454.3 
 4 –2.38 0.61 6.4 3.3 10.3 
 5 –2.29 0.72 8.5 5.2 244.3 
 6 –2.25 0.67 6.9 4.3 11.2 
 7 –2.24 0.73 8.1 5.6 218.1 
 8 –2.17 0.68 6.8 4.7 14.4 
 9 –2.51 0.63 7.2 6.6 198.6 
10 –2.36 0.59 6.4 4.7 14.4 
 
 

The following can be learned from the results. For scenario 1, where we use only 
transmissivity and recharge rate data, the hydraulic head values are too large; the 
hydraulic head is far above the terrain on many locations in many realizations. As a 
consequence, conditioning to the digital elevation model results in a strong increase of 
the transmissivity, and a decrease of the average recharge rate. The recharge rate 
decreases by about 60% (a factor of 2.5) whereas the transmissivity increases by a 
factor of 60. The recharge rate is modified less as it is more constrained by the 
available information. The conditioning results in an increased spatial variability of 
transmissivity, and a decreased spatial variability of recharge rate. The uncertainty in 
the estimated hydraulic heads decreases strongly, as could be expected. 

The simulations also show that conditioning to hydraulic heads only, and not to the 
digital elevation model, can not avoid large areas where the piezometric head is above 
the terrain. If both the piezometric head data and the digital elevation model are used 
as conditioning information, the uncertainty of transmissivity and recharge rate are 
smaller than in the case that only the digital elevation model was used. The increase of 
transmissivity is reduced when hydraulic head data are used for conditioning. It is 
likely that conditioning to the digital elevation model resulted in a modification so that 
in the first iteration the piezometric head is everywhere below the terrain. However, at 
many locations the piezometric head may have been lowered excessively. The  
piezometric head measurements allow correction of this, resulting in a reduced 
transmissivity increase (about a factor of 15). 

For all the other scenarios we see that a digital elevation model always reduces the 
ensemble variance (compare the AESD(X) for scenario 6 with those for scenario 5, and 
similarly those for scenario 8 with scenario 7, and those for scenario 10 with those for 
scenario 9). 

The inclusion of an additional part to the objective function, that monitors the 
modification of the recharge rate pattern and penalizes too large deviations from it, has 
no significant impact on the calculated ensemble statistics. However, something 
interesting can be noticed here that proves the value of the satellite images: for 99 out 



H. J. W. M. Hendricks Franssen et al. 
 
 

36

of 100 realizations (data not presented) the recharge rate pattern after conditioning to 
hydraulic heads (scenario 5) was closer to the P – ET image from the satellite than 
before inverse conditioning (scenario 1). The additional part in the objective function 
was never “activated”, and so it is concluded that only the piezometric head data 
directed the solution that resembles the satellite image more closely. The additional 
constraining of the inverse solution of the groundwater flow equation by means of the 
digital elevation model (scenario 6) yielded, for 88 out of 100 realizations, a calibrated 
recharge rate pattern that was even closer to the pattern of the P – ET image. These 
results indicate that we were too pessimistic about the quality of the P – ET image in 
the stochastic generation of the recharge rate fields. The 100 recharge rate fields, 
generated by the co-located co-simulation algorithm, deviated too much from the 
original image, based on a too pessimistic perception of the image quality. 

Finally, the inclusion of geomagnetic information has been investigated. No 
important tendencies can be detected in the ensemble statistics. However, for scenarios 
9 and 10 (many faults that are treated as separate geological zones) the average log-
transmissivity increases less than compared to scenario 1 (for scenario 9 only by a 
factor of 10). However, it cannot be proven that this is realistic. Actually, we do not 
have enough information to pose realistic constraints on maximum and minimum 
possible transmissivities in the faults. It is interesting to see that after the inverse 
calibration some faults have a clearly larger transmissivity, while for most of the faults 
the transmissivity after calibration is close to the prior transmissivity. 

Figure 1 gives some figures for one of the scenarios studied, scenario 6. 
 
 
CONCLUSIONS AND DISCUSSION  
 
A methodology has been presented that is able to incorporate exhaustive information 
from images (satellite images, geophysical survey) as conditioning information in 
stochastic inverse models. The stochastic inverse modelling produces multiple equally 
likely realizations that are conditional to this information, besides being conditional to 
traditional information such as transmissivity measurements, hydraulic head 
measurements and recharge rate estimations by the chloride method. The method has 
been applied in the Chobe region and the worth of a digital elevation model as 
conditioning information was evident. It was also demonstrated that METEOSAT and 
NOAA-AVHR images contained relevant information for improving the character-
ization of the spatially variable recharge rate. Also, geomagnetic information was used 
to identify geological structures. It could not be clarified whether the use of this 
information in inverse models improved the characterization of groundwater flow. 
 The value of geomagnetic information will be subject to future research. Also, 
scenarios with a cross-correlation between transmissivity and recharge rate will receive 
attention, as it is likely that there is some degree of correlation. The possibility that 
there are areas with a negative recharge rate, due to transpiration from trees, will be a 
third subject for future research. Additional satellite information will be studied and 
possibly included in the conditioning process in order to identify such areas. 
 The conditioning to pattern information is a topic of continuing research. 
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Fig. 1 For scenario 6: (a) average log-transmissivity Y; (b) standard deviation of Y;  
(c) average recharge rate R; (d) standard deviation of R; (e) average head; and  
(f) standard deviation of head.  
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