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Abstract Several one-dimensional models were fitted to a tracer breakthrough 
curve measured at a karst spring. The models were compared and ranked using 
an information theory approach that considers the principle of parsimony. The 
tracer breakthrough could be most adequately reproduced by including a 
fraction of mobile water and some nonequilibrium process. It was found that 
the number of observations clearly affect the model ranking. 
Keywords AIC; information theory; model calibration; model selection; tracer test 

 
 
INTRODUCTION 
 
The selection of a model by calibration is subject to a quite common dilemma: should 
a “simple” model be used, which involves only a few parameters, thus facilitating 
calibration but also reducing its ability to reproduce experimental data as important 
features may have been missed? Or is it preferable to apply a “complex” model with a 
large number of parameters to better reproduce the available data but decrease the 
information content carried by each of the model parameters? Methods relying on 
information theory approaches, that involve statistical measures based on the 
maximum likelihood, constitute one option for addressing this question. These 
methods allow one to find a compromise between a good fit and a small number of 
parameters (e.g. Burnham & Anderson, 2002; Poeter & Anderson, 2004). 
 This paper presents an application of an information theory approach to different 
one-dimensional models fitted to a fluorescein (Uranin) breakthrough curve 
(Massmann, 2004) obtained from a karst aquifer in southwest Germany (Birk et al., 
2005). This approach is used to rank the models and the impact of different numbers of 
observations on the ranking is studied. 
 
 
THEORETICAL BACKGROUND 
 
Model equations 
 
Some models considered in this paper include physical nonequilibrium processes, 
which account for partitioning of the solute into a mobile- and an immobile-fluid 
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region, with solute transport restricted to the mobile phase (Field & Pinsky, 2000). 
This is described by two dimensionless parameters: a solute partitioning coefficient β 
between the mobile and immobile phases, and a mass transfer coefficient ω between 
both phases. 
 Equation (1) describes solute transport in the mobile phase, and equation (2) 
represents processes in the immobile phase, which explains the absence of the 
advection and dispersion terms. It can be seen that the solute exchange rate between 
the immobile and mobile phases is proportional to their difference in concentration. 
The model equations read: 
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where θ is the volumetric water content [–], C the solute concentration [M L-3], L the 
length of the flow path [L], D the hydrodynamic dispersion coefficient [L² T-1], and v 
the linear velocity [L T-1]. μ represents a decay coefficient [T-1]. The subscripts m and 
im stand for mobile and immobile, respectively. It is important to note that β is related 
to the fraction f of adsorption sites that equilibrate with mobile water [–] and the 
retardation factor R by βR = θm + (R – 1)f. The dimensionless retardation factor R 
equals 1 + 2Ka/r with r the conduit radius [L] and Ka a partitioning coefficient [L] 
quantifying the sorbed tracer mass per unit surface area of solid phase and unit solute 
concentration in the water. 
 
 
Akaike’s Information Criterion 
 
Akaike’s Information Criterion, AIC, allows selection of a parsimonious model that 
uses the smallest number of parameters needed to provide an adequate approximation 
to the measured data. Thus, a compromise between a “good” fit and a small number of 
parameters can be found. When AIC is used for model selection, it must be computed 
for each model (all fitted to the same data set) and the model with the smallest AIC is 
regarded as being the “best” of the tested models. The AIC is calculated as  
AIC = –2ln( ) + 2K (Burnham & Anderson, 2002) where K equals the number 
of estimated model parameters plus one (because the variance of residuals has to be 
considered).  represents the likelihood of the estimated parameter θ  given the 
data x. For normally distributed residuals AIC equals: 

)ˆ( xL |θ

)ˆ( xL |θ ˆ

KnnnAIC 2)2ln()^ln( 2 +−π−σ=  (3) 

where  represents an estimate of the variance of residuals and n the number of 
observations. The first term in equation (3) represents the lack of fit of the model, 
which decreases when more parameters are included. The last term can be seen as a 
“penalty” for incorporating more parameters, since it then gets larger. The two middle 
terms are constants for a specific data set, and are not affected if parameters are added 
or removed from the models. 

2̂σ
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Akaike (1978) defined weights wi to obtain a relative measure of the likelihood of 
a model, given a set of N models. These weights are expressed as: 

wi =  exp(–0.5Δi)/  ( )∑ =
Δ−

N

n n1
5.0exp

where Δi = AICi – AICmin is termed the AIC difference with AICi and AICmin denoting 
the AIC of model i and the smallest AIC of all models considered. The larger the AIC 
difference of the model, the less plausible it is that this fitted model is the best one. 
 
 
RESULTS AND DISCUSSION 
 
Thirteen models were fitted to the breakthrough curve using the program CXTFIT 2.1 
(Toride et al., 1999). Model 1 only included advection and dispersion. Models 2–13 
also account for specific combinations of other processes covered by equations (1) and 
(2). Residuals were assumed to be normally distributed and the number of observations 
was 2104. The parameters fitted in each model can be seen in Table 1. 
 
 
Table 1 AIC and related information for the fitted models. v = linear advective velocity; D = dispersion 
coefficient; R = retardation factor; β = solute partitioning coefficient between the mobile and immobile 
phases; ω = mass transfer coefficient between both phases; μ = decay coefficient. Subscripts m, im 
m+im stand for mobile, immobile phase and a combined reaction for both phases, respectively. 

   Model Fitted parameters RSS/n K ( ))ˆ(ln2 xL |θ− AIC AIC Δi AIC wi

   12 v D  β ω μm μim μ1+2 0.3617 7 3831.0 3845.0 0.0 0.284 
   6 v D  β ω  μim μ1+2 0.3620 6 3833.0 3845.0 0.0 0.284 
   11 v D R β ω  μim μ1+2 0.3620 7 3833.1 3847.1 2.0 0.102 
   13 v D R β ω μm μim μ1+2 0.3617 8 3831.2 3847.2 2.2 0.097 
   8 v D  β ω   μm + im 0.3624 6 3835.6 3847.6 2.6 0.078 
   9 v D R β ω   μm + im 0.3622 7 3834.1 3848.1 3.1 0.060 
   10 v D R β ω μm  μ1+2 0.3622 7 3834.4 3848.4 3.4 0.051 
   7 v D  β ω μm  μ1+2 0.3627 6 3836.8 3848.8 3.8 0.043 
   4 v D  β ω   μ1+2 2.8818 5 8197.8 8207.8 4363 0.000 
   3 v D    μm  μ1+2 11.2439 4 11062.2 11070.2 7225 0.000 
   5 v D R   μm  μ1+2 11.2438 5 11062.2 11072.2 7227 0.000 
   1 v D      μ1+2 20.7321 3 12349.6 12355.6 8511 0.000 
   2 v D R         μ1+2 20.7321 4 12349.6 12357.6 8513 0.000 

 
 
The impact of mass transfer, retardation, and decay 
 
Figures 1 and 2 show the fitted and the measured curves. The fitted models can be 
separated into two groups: models 1 to 5, with fitted curves that can be clearly 
distinguished from the measured one; and models 6 to 13, which all look very similar 
and fit the measured data better than the models in the first group. Figure 1 reveals that 
model 4 (physical nonequilibrium) is able to produce a better fit than models that do 
not consider partitioning of the solute into a mobile and an immobile phase (models 1, 
2, 3 and 5), especially regarding the tailing. 
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Fig. 1 Measured and fitted concentrations for models 1 to 5 (Table 1). 
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Fig. 2 Measured and fitted concentrations for models 6 to 13 (Table 1). 

 
 

 Models 1 to 5 have much higher AICs than the remaining models (Table 1). 
Models 12 and 6 have the lowest AIC, and can, therefore, be considered the best 
models. These two models account together for 56% of the Akaike weights wi, i.e. 
there is a 56% probability that one of these models is the best of the 13 models. 
Models 1 to 5 have no support (Akaike weight = 0), implying that the remaining 
models that include physical nonequilibrium and decay reactions provide better 
approximations to the measured data. 

The term describing the fitting is the most important AIC component. The term 2K 
has, however, an effect on the relative AIC values (and therefore on the model 
weights). The ranking of the models 11 and 13, for instance, is different if only the 
quality of fitting is considered; for example, the residual sum of squares divided by the 
number of observations, RSS/n, or the first term of equation (3). 
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Varying the number of observations 
 
To analyse the effects of data sets with different numbers of observations on the model 
ranking, sixteen additional data sets were constructed by deleting observations at 
regular intervals. The models were then fitted to the reduced data sets. When all 2104 
observations are considered, model 12 (six fitted parameters) is the best (Table 2). If 
the number of observations is reduced, model 6 (five fitted parameters) moves up to 
the first place. Model 4 (four fitted parameters) is the best when 22 or 18 observations 
are available. 
 Model 13 (the model with the highest number of parameters) takes place four in 
the set with 2104 observations, and successively a lower place as fewer observations 
are considered until reaching the last place when only 11 observations are available. 
More generally, models with six fitted parameters tend to be in higher positions of the 
ranking, the more observations are considered. With 421 observations or fewer, no 
model with six or more parameters occupies any of the first three places.  
 Focusing on each model separately, there is not much difference in the fitted 
parameters as long as the number of observations is larger than 53. For instance, the 
dispersivity (α) for model 9 is very similar when at least 141 observations are 
considered (Table 3). The differences increase for 106, 85 and 71 observations, but 
dispersivities are still close to those measured with more observations. With 53 or 
fewer observations, however, differences become considerably larger. 

 
Table 2 Ranking of the models according to AICc when data sets with different number of observations 
are considered (AICc includes a correction term recommended in Burnham & Anderson (2002) when 
the ratio n/K is smaller than 40). 

   Number of observations 2104 1578 1403 1052 421 211 71 43 22 18 11 
Best model 12   6   6   6   6   6   6   6   4   4   6 

    6 12 12 12   8   7   8   8   7   7   8 
 11 11   7   8   7   8   7   7   8   8   7 
 13 13   8   7   9 12 12 12   6   6   4 
   8   9   9 11 12 11 11 11   9 10 12 
   9   8 13   9 11   9   9 10 10   9 11 
 10   7 11 13 13   10 10   9 11 11 10 
   7 10 10 10 10   13 13 13 12 12   9 
   4   4   4   4   4   4   4   4 13 13   3 
   3   3   3   3   3   3   3   3   2   2   5 
   5   5   5   5   5   5   5   5   3   3   1 
   1   1   1   1   1   1   1   1   1   1   2 

Worst model   2   2   2   2   2   2   2   2   5   5 13 

 
Table 3 Dispersivities (mobile phase) for model 9 fitted to data sets with different number of observations. 

   No. obs α   No. obs α   No. obs α No. obs α 
   2104 3.88  421 3.87  85 3.85 27 5.31 
   1893 3.88  211 3.87  71 3.92 22 5.19 
   1578 3.88  141 3.89  53 3.70 18 5.27 
   1403 3.88  106 3.84  43 4.00 11 5.62 
   1052 3.88                 
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CONCLUSIONS 
 
There is a difference in the model ranking when AIC is used instead of the residual 
sum of squares. This difference is important when the quality of the fitting is similar 
among the models. 
 There is no advantage in calculating AIC when the differences between the fitted 
curves are important enough, which is expected when there is a large number of 
available observations. It can also occur that there is no difference in the model 
ranking (when comparing the results obtained with AIC and least squares) if the fitted 
models have a similar number of parameters. 
 Data sets with less observations support simpler models (with fewer fitting 
parameters). On the contrary, models with more parameters are preferred when larger 
data sets are available. 
 Future work could involve non-Gaussian statistical distributions of the residuals. 
These distributions, of course, have to allow for positive as well as negative values. 
The ranking of the models may be altered if different distributions of residuals are 
assumed. However, the application of a statistical test is recommended beforehand in 
order to check whether the assumption of a specific residual distribution is adequate. 
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