
Calibration and Reliability in Groundwater Modelling: From Uncertainty to Decision Making  
(Proceedings of ModelCARE’2005, The Hague, The Netherlands, June 2005). IAHS Publ. 304, 2006.  
 
 

 

67

Comparison of parameter estimation algorithms in 
hydrological modelling 
 
 
R. S. BLASONE1, H. MADSEN2 & D. ROSBJERG1 

1 Environment & Resources, Technical University of Denmark, Bygningstorvet, Building 115, 
Room 156, DK-2800 Kongens Lyngby, Denmark 
rsb@er.dtu.dk 

2 DHI Water & Environment, Agern Allé 5, DK-2970 Hørsholm, Denmark 
 
Abstract Local search methods have been applied successfully in calibration 
of simple groundwater models, but might fail in locating the optimum for 
models of increased complexity, due to the more complex shape of the 
response surface. Global search algorithms have been demonstrated to perform 
well for these types of models, although at a more expensive computational 
cost. The main purpose of this study is to investigate the performance of a 
global and a local parameter optimization algorithm, respectively, the Shuffled 
Complex Evolution (SCE) algorithm and the gradient-based Gauss-Marquardt-
Levenberg algorithm (implemented in the PEST software), when applied to a 
steady-state and a transient groundwater model. The results show that PEST 
can have severe problems in locating the global optimum and in being trapped 
in local regions of attractions. The global SCE procedure is, in general, more 
effective and provides a better coverage of the Pareto optimal solutions at a 
lower computational cost. 
Keywords automatic calibration; hydrological modelling; MIKE SHE model;  
optimization algorithms; parameter estimation  

 
 
INTRODUCTION 
 
Local gradient-based search methods have been widely applied in calibration of ground-
water models. In more complex models the increased nonlinearity in the parameter-
model response provides a more complex shape of the response surface and local 
search procedures can be trapped in local optima, and thus be unable to reach the 
global optimum. Global population-evolution based search algorithms, such as genetic 
algorithms and the Shuffled Complex Evolution (SCE) algorithm, have been demon-
strated to perform well for these types of models, although at a more expensive 
computational cost. 
 The main purpose of this study is to investigate the performance of local and 
global parameter optimization algorithms when applied to hydrological models with 
different degrees of complexity. Two different search algorithms, a local and a global 
procedure, are applied to a steady-state model and a transient-state groundwater model 
and their efficiency and effectiveness are compared. 
 
 
STUDY CATCHMENT 
 
The study site is the Karup catchment in the western part of Denmark, which is drained 
by the Karup River and about 20 tributaries. The catchment has an area of 440 km2 and 
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is characterized by a quite homogeneous geology of predominantly sandy soils with 
high permeability. The aquifer is mainly unconfined with a variable thickness ranging 
from 90 m at the upstream part of the catchment, to 10 m in the western and central 
areas. 
 The Karup catchment has been extensively investigated in previous studies 
(Refsgaard, 1997; Madsen, 2003), and a comprehensive hydrological database of 
rainfall from nine stations (daily values), runoff at the river outlet (daily values), 
groundwater elevation data from 17 wells (recorded every 15 days) and temperature 
(daily values) is available. The data used for the calibration of the models cover a  
6-year period, from 1 January 1969 to 1 January 1975. 
 
 
MODEL SET-UP AND CALIBRATION PARAMETERS 
 
The software used in the study is the integrated MIKE SHE modelling system 
(Refsgaard & Storm, 1995), which has been used to model both the steady-state and 
the transient model of the Karup catchment. 
 The horizontal computational grid is defined with a spatial scale of 1 × 1 km, and 
the geology of the saturated zone is represented with vertical and horizontal scales of, 
respectively, 10 m and 1 × 1 km. The geology is taken from the Danish National Water 
Resources model. For each grid element a soil type is assigned with a given code and 
hydrogeological parameters. Six general soil types are defined (Table 1). A 2-D model 
is applied and hence one computational layer is defined for the saturated zone. 
 
 
Table 1 Soil types. 

Soil code Soil name Description 
1 Melt water sand Quaternary and Post-Glacial sand and gravel 
2 Clay Glacial, Inter-Glacial and Post-Glacial clay and silt 
3 Quartz sand Miocene, medium to coarse grained sand and gravel 
4 Mica sand Miocene, fine to medium grained sand 
5 Mica clay/silt Pre-Quaternary clay and silt 
6 Limestone Limestone 
 
 
 Preliminary sensitivity analysis shows that only the hydrogeological parameters of 
two of the soil types are important (melt water sand and quartz sand). The horizontal 
conductivities of these are subject to calibration. The vertical conductivities have been 
set to one tenth of the respective horizontal hydraulic conductivities. 
 Overland flow is only generated when the groundwater level rises and reaches the 
surface level. Surface runoff is routed down-gradient towards the river system using 
the diffusive wave approximation of the Saint Venant equations. The exact route and 
quantity is determined by the topography and flow resistance as well as the losses due 
to evaporation and infiltration along the flow path. 
 A drainage system is defined that includes both natural and artificial drainages in 
the catchment. Drainage flow is simulated using an empirical formula, which for each 
cell requires a drainage level and a time constant (drainage coefficient) that regulate 
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how much and how fast water is drained. Both of these model parameters are assumed 
to be uniformly distributed in the catchment and are subject to calibration. 
 The river system collects overland and saturated zone flow. The stream–aquifer 
interaction is accounted for by a leakage coefficient. This coefficient is assumed to be 
constant for all river branches and is subject to calibration. 
 An empirical root zone model is applied to calculate the recharge to MIKE SHE 
(Henriksen, 2002) based on observed precipitation and potential evapotranspiration, 
land use information and estimates of the field capacity. 
 The five above-mentioned model parameters have been selected for automatic 
calibration, while the others were fixed to their previously manually-calibrated values.  
 The transient model has the same parameterization and recharge conceptualization 
as the steady-state model, but the processes are modelled in transient mode. 
 
 
OPTIMIZATION PROCEDURES 
 
The global search methodology applied is the Shuffled Complex Evolution (SCE) 
algorithm (Duan et al., 1992) implemented in the AUTOCAL software (DHI, 2004). 
The SCE algorithm is an evolutionary-based procedure that simultaneously evolves a 
population of solutions (parameter sets) towards better solutions in the search space, 
trying to converge to the global optimum of the objective function. 
 The local method employed is the Gauss-Marquardt-Levenberg nonlinear scheme, 
as implemented in the PEST software (Doherty, 2004). The Levenberg-Marquardt 
algorithm is a gradient-based optimization strategy that combines the Gauss-Newton 
algorithm and the method of gradient descent, and it provides a numerical solution to 
the mathematical problem of minimizing a sum of squared deviations between model 
outcomes and corresponding field data. 
 The Latin Hypercube Sampling (LHS) approach (McKay et al., 1979) is employed 
to generate an initial population of 33 parameter sets which guarantees a good 
coverage of the parameter space. The size of this initial population is fixed by the 
choice made for the SCE algorithm parameters (three complexes with 11 points in each 
complex). These points are then used as initial population for the SCE algorithm, while 
33 independent PEST runs are conducted starting from each of these points separately. 
 
 
MULTI-OBJECTIVE CALIBRATION 
 
The calibration is conducted in a multi-objective context, i.e. different optimization 
criteria are used to perform the search in the feasible parameter space. In this study the 
sum of the mean squared errors related to groundwater levels (m) at 17 locations 
within the Karup catchment, MSEwells, and the streamflow (m3 s-1) at the river outlet, 
MSErunoff, are aggregated into a single objective function, Faggr, as given in equation 
(1). The aggregated measure is a function of the parameters, θ, and of the weights 
assigned to the objective functions of the river discharge, wrunoff, and of the aggregated 
wells, wwells. 

∑
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 The use of different combinations of weights allows accounting for the different 
scales of magnitude of the quantities in the aggregated measure and broadens the 
exploration of the solution space. Therefore, several optimization runs have been 
conducted assigning different weights to the objective functions of the river discharge 
and of the aggregated wells. The weights applied are shown in Table 2. 
 Convergence conditions in the objective function space and in the parameter space 
have been adopted as stopping criteria for the two search procedures. 
 The equifinality problem and the trade-offs between objective functions are 
tackled by evaluating the solutions according to the Pareto dominance criterion 
(Madsen, 2003). While the solution of the local search algorithm provides one result 
for each optimization run, thus producing 33 solutions, the global procedure is 
expected to provide an approximation of the Pareto front in the vicinity of the global 
optimum. The performance of the local and global search procedure is compared in 
terms of the estimated Pareto front in the objective function space. 
 
 
RESULTS 
 
The optimization results are summarized in Table 2 where the number of Pareto 
optimum solutions for the two optimization procedures are shown. 
 Table 2 shows that the performance of the local procedure is highly affected by the 
weights assigned to the objective functions. None of the calibration runs of the steady-
state model converges to a Pareto optimum if both objective functions are simul-
taneously minimized.  
 
 
Table 2 Quantity of Pareto optimal solutions found within the different calibration experiments. 

 No. of 
runs 

No. of 
optima 

ww = 1
wr = 0 

ww = 1
wr = 1 

ww = 0.24
wr = 1 

ww = 0.06
wr = 1 

ww = 0.03 
wr = 1 

ww = 0 
wr = 1 

Steady-state model         
PEST 15258   14     8     0   0   0   0   6 
SCE   4279 396 125 170   3 70 17 11 
Transient-state model         
PEST 16332 104   19   27 24 20   8   6 
SCE   4097 181     8   15 49   5 65 39 
No. of runs is total number of model runs conducted for each type of model to find optimal points. 
No. of optima is number of optimal points (Pareto solutions) found within the total no. of model runs.  
ww, wr are the weights wwells and wrunoff  of equation (1). The quantity in each column represents the 
amount of optimal points found within a calibration experiment applying the objective functions weights 
ww and wr. 
 
 
 The inability of the local procedure to estimate the Pareto front is emphasized in 
Fig. 1, where the solutions of the 198 independent optimization runs (six combinations 
of weights × 33 starting points) for the steady-state model are plotted. In particular, the 
local optimization has a tendency to be trapped in sub-optimal regions of attraction, as 
seen in Fig. 1 by the two clouds with high concentration of solutions for a runoff MSE 
error greater than 7 (m3 s-1)2. 
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Fig. 1 PEST results for the calibration of the steady-state model. 
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Fig. 2 Pareto front plot for the transient-state model. 

 
 
 In Fig. 2 the calibration results obtained for the transient-state model using the two 
procedures are compared in terms of estimated Pareto fronts. Despite the fact that both 
methods fail to estimate a particular region of the front (probably due to the inapprop-
riate or incomplete choice of the combination of objective functions weights), the 
capability of SCE in exploring the objective function space and estimating the Pareto 
front is evident. 
 It must be noted that these results are achieved by a number of Pareto solutions 
that is about twice the number of points found by PEST and a total number of model 
runs that is about four times smaller than that required by the local method (results in 
Table 2). 
  Despite the better performance of SCE in exploring the solution space with higher 
efficiency, some of the Pareto dominant solutions obtained for the steady-state model 
with the local search procedure are better than those found with SCE (results not 
shown herein). Also, for the transient-state model some of the local search solutions 
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are better than the SCE solutions (as shown in Fig. 2). This demonstrates that local 
search methods can be quite effective in parameter estimation, but at the expense of a 
high computational cost if a complete exploration of the solution space has to be 
conducted. 
 A “balanced optimum solution” has been chosen for the two different optimization 
algorithms with the transient-state model as a compromise between the two objective 
functions. The solution of the local method (indicated in Fig. 2 as “PEST balanced 
solution”) appears the best compromise between the two objective functions. 
 SCE provides a better exploration of the solution space and a more complete 
estimation of the Pareto front, although it may be less effective at certain points. 
However, a better performance can be obtained by increasing the population size in 
SCE. 
 
 
CONCLUSIONS 
 
The results show that PEST can have severe problems in locating the global optimum 
and in being trapped in local regions of attractions, as especially demonstrated by the 
steady-state model calibration. The global SCE procedure is, in general, more effective 
and provides a better coverage of the Pareto optimal solutions at a lower computational 
cost. However, SCE may also be trapped in local points of attraction. 
 A future issue for this research is to extend the comparison of performance of the 
SCE algorithm and the Gauss-Marquardt-Levenberg scheme to a more complex and 
fully integrated MIKE SHE model of the same catchment. 
 Another issue to investigate is the combined application of the global and local 
search techniques, using the global method as an initial screening procedure with 
which to approach the Pareto front and subsequently employing the local method to 
refine the estimation of the optima. In this way the effectiveness of the local procedure 
can be reached at a lower computational cost. 
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