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Abstract The calibration of distributed and integrated hydrological models is 
formulated as a general multi-objective optimization problem that utilises 
multiple sources of information in a consistent way. This formulation allows a 
comprehensive evaluation of the trade-off between different calibration 
objectives and an elaborate comparison of different model structures. It is a 
natural solution and extension to the weighted nonlinear least squares 
regression problem, and it allows the modeller or decision-maker to choose (or 
weight) solutions at a later stage according to the specific model application 
being considered. The proposed framework is illustrated for calibration of two 
MIKE SHE models of different complexity for the same catchment. 
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INTRODUCTION 
 
In the calibration of distributed and integrated hydrological models it is generally 
recognized that multiple sources of information should be applied. Multi-site and 
multi-variable calibration and validation should be performed if distributed predictions 
are needed for different state variables (Refsgaard, 1997). It should also be noted that 
model parameters are usually better determined when new types of field data are used 
for the calibration rather than adding more data of the same variable (e.g. McLaughlin 
& Townley, 1996). This calls for formulation of the calibration problem using a 
general multi-objective framework. Such a framework has been widely applied for 
calibration of lumped, conceptual rainfall–runoff models (e.g. Gupta et al., 1998; 
Madsen, 2000; Khu & Madsen, 2005) but has only recently been adopted in distributed 
hydrological modelling (Madsen, 2003). 
 In groundwater modelling, the parameter estimation problem has traditionally been 
solved using weighted or generalized nonlinear least squares regression which allows 
weighting of individual measurements (of the same or different state variables). The 
statistical theory of this approach requires the weighting to be proportional to the 
inverse of the covariance matrix of the “true” observation errors. This method, 
however, has severe theoretical and practical limitations. The observation error 
represents in a lumped way all the different error sources involved in the modelling. 
The model prediction depends, in general, on these errors in complex and nonlinear 
ways, hence violating the assumption of additive errors. Furthermore, it is in practice 
impossible to identify and quantify all the different error sources. 
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 The multi-objective calibration framework presented in this paper offers a more 
general procedure for balancing different types of information in the model calibration. 
This approach is more pragmatic in the sense that it does not rely on statistical theory, 
although weighting according to observation errors can be included as part of the 
framework. 
 
 
MULTI-OBJECTIVE CALIBRATION PROBLEM 
 
In a multi-objective context model calibration can, in general, be performed on the 
basis of: (a) multi-variable measurements, such as groundwater levels, river flows, and 
concentration measurements; (b) multi-site measurements consisting of several 
measurement sites distributed within the modelling domain; and (c) multi-response 
modes, i.e. calibration criteria that measure various responses of the hydrological 
processes such as the general water balance, peak flows, and low flows. 
Mathematically, the calibration problem can be stated as: 

{ Θ∈θθθθ ,)(),...,(),( 21 mFFFMin  (1) 

where θ are the model parameters to be estimated, Fi(θ), i = 1, 2,.., m are the different 
objective functions, and Θ is the feasible parameter space. The objective functions in 
equation (1) can be any statistic that measures the fit between observations and 
corresponding simulated values. When calculating these measures, weights can be 
assigned to individual measurements to account for measurement uncertainties and 
correlations between the measurements. Equation (1) can also include penalty terms 
such as prior information about the parameters (Mertens et al., 2004). 
 The solution to the calibration problem will not be a single unique set of 
parameters but will consist of the Pareto set of solutions (non-dominated solutions), 
according to various trade-offs between the different calibration objectives. For a 
Pareto solution none of the objective functions can be further minimized without an 
increase of some of the other objective functions, thus forming the trade-off. Each of 
the Pareto solutions is, from a multi-objective point of view, equally good. This multi-
objective equivalence of parameter sets should not be confused with the concept of 
parameter equifinality (Beven & Binley, 1992) which refers to the multitude of equally 
good parameter sets as measured according to a single likelihood or objective function. 
 An essential component of solving the multi-objective calibration problem in 
equation (1) is how to compare parameter sets when there are two or more calibration 
objectives. Available techniques can be grouped into: (a) aggregation approaches, and 
(b) Pareto domination approaches. In the aggregation approach individual weights are 
assigned to the objective functions (or transformations thereof) and aggregated into 
one measure that is used in the optimization (e.g. Madsen, 2000, 2003). By performing 
several individual optimization runs with different weight combinations, the entire 
Pareto surface can be explored. The Pareto domination approach does not rely on a 
single comparative measure but on whether one solution is dominated by another for 
the different calibration objectives considered. In the optimization, a Pareto rank is 
assigned to each parameter set according to the domination criterion (e.g. Goldberg, 
1989). 
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 Numerical optimization procedures that are especially suited for multi-objective 
optimization are the population based procedures such as genetic algorithms (GA) (e.g. 
Deb et al., 2000), the shuffled complex evolution (SCE) algorithm (Duan et al., 1992), 
and multi-objective extensions of SCE (Vrugt et al., 2003). These procedures evolve a 
population of parameter sets rather than a single parameter set as in traditional gradient 
based search procedures. 
 Model calibration based on Pareto optimization is a powerful method that has 
several important advantages: 
– It allows a comprehensive evaluation of the trade-offs between different 

calibration objectives and hence highlights possible model structural deficiencies. 
In the case of a perfect model and ideal measurements, the Pareto surface will 
collapse to one single point in objective function space with one best parameter 
set. Departures from this ideal solution may indicate the presence of model 
structural errors. 

– It offers an elaborate framework for comparison of different models or model 
conceptualizations by considering several performance criteria in a consistent 
manner. For instance, one model structure may be better in simulating 
groundwater heads than river runoff as compared to another model structure. Such 
differences will not be highlighted if only one weight combination of groundwater 
and river runoff observations is considered. 

– It allows choosing single Pareto-optimal solutions according to the specific model 
application being considered. The modeller or decision-maker avoids having to 
specify preferences to any of the calibration objectives at the calibration stage but 
can choose a preferred solution among the Pareto optimal solutions at a later stage. 
When several objective functions are included, a huge number of Pareto optimal 
solutions exist, and hence the calibration problem quickly becomes a decision-
making problem. Khu & Madsen (2005) introduced a Pareto preference-ordering 
scheme that chooses preferred solutions according to a stronger dominance 
criterion than Pareto dominance. In this case, solutions that are also Pareto optimal 
in the different sub-space combinations of the objective functions are preferred. 

– It provides a better discrimination between model structure and parameter sets and 
hence a better posed optimization problem by “unfolding” the equifinality 
problem. 

– It provides a natural solution and extension to the weighting problem in weighted 
and generalized nonlinear least squares regression. 

 
 
EXAMPLE APPLICATION 
 
The multi-objective calibration framework was applied for calibration of a MIKE SHE 
model set-up of the Danish Karup catchment. The Karup catchment has an area of  
440 km2 and is drained by the Karup River and about 20 tributaries. The topography 
varies from about 20 to 100 m. The geology is relatively homogeneous with highly 
permeable sand and gravel deposits and small lenses of moraine clay. The aquifer is 
mainly unconfined and varies in thickness from about 10 m at the western and central 
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part to more than 90 m at the upstream eastern water divide. The depth of the 
unsaturated zone varies from 25 m at the eastern water divide to less than 1 m in the 
wetland areas along the river. The land use consists of agriculture (67%), forest (18%), 
heath (10%), and wetland areas (5%). 
 Two different models are considered: (a) a groundwater model with prescribed 
recharge, and (b) a fully integrated model that includes evapotranspiration processes 
and unsaturated flow using Richards’ equation. The two models have the same 
parameterization of the saturated zone, the river and the drainage system. The geol-
ogical conceptualization is taken from the Danish National Water Resources model 
(DK-model) which is interpreted in 10-m thick layers using a grid size of 1 × 1 km. 
For each grid element, a soil type is assigned with a given code and hydrogeological 
parameters. Six general soil units are defined, see Table 1. The hydraulic 
conductivities of these units are subject to calibration. 
 
 
Table 1 Soil types used in the conceptualization of the saturated zone. 

 Soil code Soil name Description 
 1 Melt water sand Quaternary and Post-Glacial sand and gravel 
 2 Clay Glacial, Inter-Glacial and Post-Glacial clay and silt 
 3 Quartz sand Miocene, medium to coarse grained sand and gravel 
 4 Mica sand Miocene, fine to medium grained sand 
 5 Mica clay/silt Pre-Quaternary clay and silt 
 6 Limestone Limestone 
 
 
 The Karup River and the main tributaries are included in the model. A thin 
permeable layer is assumed between the river and the main aquifer. The leakage 
coefficient characterizing this layer is subject to calibration. The wetland areas are 
drained by ditches and drain pipes. Drainage is modelled conceptually using a linear 
reservoir description in each cell. The drainage level (relative to ground surface) and 
the time constant of the linear reservoir model are assumed to be homogeneous in the 
catchment and are subject to calibration. 
 For the fully integrated model two soil profiles are specified for the unsaturated 
zone model. A soil profile (General) used for the main part of the catchment and a soil 
profile (Heath) for the heath areas. The General soil profile comprises loamy sand to a 
depth of 100 cm and fine sand below. The Heath soil profile consists of fine sand to a 
depth of 55 cm and coarse sand below. For each of the four soil types, van Genuchten 
retention and conductivity curve parameters are subject to calibration. 
 In the calibration, groundwater level data from 17 wells sampled every two weeks 
and daily runoff data from the catchment outlet are used. Based on these data two 
objective functions are defined: (a) the average root mean squared error (RMSE) of the 
groundwater levels, and (b) the RMSE of the runoff at the catchment outlet. Data in the 
period 1 January 1971–31 December 1974 were used for calculation of the objective 
functions. To minimize the effect from the initial conditions, a 2-year warm-up period 
was applied in the simulations. 
 A preliminary sensitivity analysis was adopted to identify the most sensitive 
parameters to be included in the optimization. For the groundwater model, the hydraulic 
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conductivity of soil unit 1 (melt water sand) and unit 3 (quartz sand), the leakage 
coefficient, the drainage level, and the drainage time constant, were selected for 
calibration. A constant relation of 0.1 between vertical and horizontal hydraulic 
conductivity was assumed. Thus, five parameters were included in the calibration in 
total. Additional sensitive parameters for the integrated model were the saturated 
hydraulic conductivity and the inverse of the air-entry value in the van Genuchten 
retention curve of the two soil types in the General soil profile (loamy sand and fine 
sand). Thus, for the integrated model, nine parameters were included in the calibration. 
For the optimization a population based algorithm, the Population Simplex Evolution 
(PSE) method implemented in the AUTOCAL software (DHI, 2005) was applied. For 
both models a population size of 50 was used and in total 2000 model evaluations were 
performed. 
 The results of the Pareto optimization for the two models are shown in Fig. 1. For 
both models a trade-off between groundwater levels and runoff simulation is observed. 
The optimum solution with respect to groundwater levels provides a poor simulation of 
the runoff, and vice versa. For the integrated model the Pareto front has a sharp 
structure, whereas the trade-off for the groundwater model has a gentler slope. The 
sharp structure for the integrated model implies that by relaxing only slightly on the 
runoff performance, the groundwater head simulations can be significantly improved. 
 The estimated Pareto fronts allow an elaborate comparison of the performance of 
the two models. One would, in general, expect that the integrated model would 
perform better than the groundwater model due to the more advanced modelling of the 
recharge processes. However, the integrated model is not strictly better than the 
groundwater model. When focusing on the runoff simulation, the integrated model has 
a significantly better performance than the groundwater model, whereas for ground-
water level simulation the groundwater model has better performance. This may 
indicate problems with the conceptualization of the evapotranspiration and unsaturated 
zone model or that other parameters not included in the optimization are important. 
 
 

0.30

0.40

0.50

0.60

0.70

0.80

0.90

0.90 0.95 1.00 1.05 1.10 1.15 1.20

Average RMSE wells [m]

R
M

SE
 ru

no
ff 

[m
3 /s

]

Integrated model
Groundwater model

 
Fig. 1 Estimated Pareto fronts of the two models. 
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 The modeller or decision maker can subsequently use the results of the Pareto 
optimization to choose preferred solutions. This allows emphasis to be put on certain 
modelling aspects (runoff or groundwater level simulations) or use of other 
information not directly included in the calibration. If the Pareto front is sharp, the 
break point on the front is often preferred as a good compromise solution (Madsen, 
2003). However, in general, the final choice of preferred solutions should depend on 
the actual model application being considered. Preferred solutions may also be 
determined prior to the calibration by specifying appropriate weights to the different 
objective functions. However, due to differences in units and magnitudes of the 
different observations, and differences in variability of the objective functions in the 
feasible parameter space, appropriate weighting is very difficult to determine prior to 
the calibration. Estimation of the entire Pareto surface allows consistent weighting of 
objectives at a later stage. 
 
 
CONCLUSIONS 
 
Calibration of distributed and integrated hydrological models has been formulated as a 
general multi-objective optimization problem that allows consistent use of different 
types of information. Pareto optimization provides an elaborate framework for 
evaluating trade-offs between the different objectives and to compare different model 
structures. It is a natural solution and extension to the problem of weighting 
observations from different information sources in weighted nonlinear least squares 
regression that is traditionally applied in groundwater modelling. 
 An example application has been presented that illustrates the use of the proposed 
calibration framework. Two MIKE SHE models of different complexity for the same 
catchment have been calibrated using groundwater level and runoff data. For both 
models a trade-off between groundwater level and runoff simulations existed. The 
more complex integrated model is not strictly better than the simpler groundwater 
model, suggesting possible model structural errors related to the conceptualization of 
the recharge processes, or the existence of important parameters not included in the 
optimization. Based on the estimated Pareto front, the modeller or decision-maker can 
choose preferred solutions that tailor the model calibration to the specific objectives of 
the model application being considered. 
 
 
REFERENCES 
 
Beven, K. J. & Binley, A. M. (1992) The future of distributed models: Model calibration and uncertainty prediction. 

Hydrol. Processes 6, 279–298. 
Deb, K., Agrawal, S., Pratap, A. & Meyarivan, T. (2000) A fast elitist non-dominated sorting genetic algorithm for multi-

objective optimization: NSGA-II. In: Proc. of Parallel Problem Solving from Nature VI Conf., 849–858. Springer, 
Berlin, Germany. 

DHI (2005) AUTOCAL, Auto Calibration Tool, User Guide. DHI Software 2005, DHI Water & Environment, Denmark. 
Duan, Q., Sorooshian, S. & Gupta, V. (1992) Effective and efficient global optimization for conceptual rainfall–runoff 

models. Water Resour. Res. 28(4), 1015–1031. 
Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimisation and Machine Learning. Addison-Wesley, Reading, 

Massachusetts, USA. 
Gupta, H. V., Sorooshian, S. & Yapo, P. O. (1998) Toward improved calibration of hydrological models: multiple and 

noncommensurable measures of information. Water Resour. Res. 34(4), 751–763. 



Use of Pareto optimization for multi-criteria calibration of hydrological models 
 
 

99

Khu, S. T. & Madsen, H. (2005) Multi-objective calibration with Pareto preference ordering: an application to rainfall–
runoff model calibration. Water Resour. Res. 41, 10.1029/2004WR003041. 

Madsen, H. (2000) Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. J. Hydrol. 235, 
276–288. 

Madsen, H. (2003) Parameter estimation in distributed hydrological catchment modelling using automatic calibration with 
multiple objectives. Adv. Water Resour. 26, 205–216. 

McLaughlin, D. & Townley, L. R. (1996) A reassessment of the groundwater inverse problem. Water Resour. Res. 32(5), 
1131–1161. 

Mertens, J., Madsen, H., Feyen, L., Jaques, D. & Feyen, J. (2004) Including prior information in the estimation of effective 
soil parameters in unsaturated zone modelling. J. Hydrol. 294, 251–269. 

Refsgaard, J. C. (1997) Parameterisation, calibration and validation of distributed hydrological models, J. Hydrol. 198,  
69–97. 

Vrugt, J. A., Gupta, H. V., Bastidas, L., Bouten, W. & Sorooshian, S. (2003) Effective and efficient algorithm for 
multiobjective optimization of hydrologic models. Water Resour. Res. 39(8), 10.1029/2002WR001746. 

 

 
 
 

 
 


