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Abstract Since a few years ago, TNO has had an efficient representer-based 
inverse algorithm operational for practical applications. This paper discusses 
the advantages that are encountered by using the inverse algorithm in real- 
world groundwater modelling studies. We also discuss problems we encounter 
in real-world groundwater modelling studies that are related to convergence 
problems for nonlinear, nondifferentiable packages of the groundwater model, 
especially drains. 
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INTRODUCTION 
 
For a number of years, TNO has had an efficient representer-based Bayesian inverse 
algorithm operational for practical applications. The algorithm minimizes the sum of 
measurement residuals and deviations of model parameters from their prior mean. 
These penalty terms are weighted by the inverse of the measurement error and model 
parameter covariance matrix, respectively. A short overview of the inverse algorithm is 
given in the next section of this paper. A more extensive overview of the inverse 
algorithm is given in Valstar (2001) and Valstar et al. (2004).   
 The algorithm has the advantage that it does not require a user-defined parameter-
ization, such as zonation, which is often applied in groundwater studies (Cooley, 1977; 
Carrera & Neuman, 1986; Hill et al., 2000). The inverse model has the flexibility to 
update model parameters where the information from the measurement tells them to do 
so. In order to run realistic real world problems, we upscale the model before the 
inverse model and downscale it again afterwards. This paper first introduces the 
Bayesian estimation method and then we discuss the merits and problems that are 
encountered by using the inverse algorithm in real world groundwater modelling studies.  
 
 
BAYESIAN ESTIMATION METHOD 
 
The inverse method is based on the Bayesian estimation theory in which all uncertain 
model parameters and model errors are supposed to have a random distribution.  
 The forward model is a discretized, linear steady-state groundwater flow equation: 

( ) wqhA +=α  (1) 



Using Bayesian inverse modelling in real-world projects: opportunities and challenges 
 
 

109

where A is the transition matrix, which is a function of the model parameters α; h the 
head vector; q the deterministic driving force vector and w the model error vector. 
 The measurements are given by: 

ε+= )(hMz  (2) 

where z is the measurement vector and M the head vector of maps to the predicted 
measurement values, while ε is the measurement error vector. 
 Assuming that all model parameters, model errors and measurement errors are not 
mutually cross-correlated and are normally distributed with known covariances, we 
arrive at the following objective function: 
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where the matrices C denote the prior covariances and α  denotes the prior mean value 
of the model parameters. 
 For a large number of model parameters and model errors, this objective function 
can be minimized efficiently using the following basis function expansions: 
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where Ψi and Ξi are, respectively, the parameter and head representer for the ith 
measurement; b, a vector of coefficients (the only independent unknown parameters); 
hF , the first guess estimate of the heads (obtained from the model using the prior mean 
model parameters and no model errors); and hcorrection the head correction term that 
corrects for the nonlinear relationship between the heads and model parameters. 
 Valstar (2001) shows that these terms can be obtained from the following 
equations: 
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After coefficients b are calculated in equation (9); the parameters are updated using 
equation (4). Updating the parameters results in changes to equations (6)–(9) and 
therefore it needs to be solved iteratively. The straightforward implementation of the 
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optimization algorithm does not always converge. We stabilized the search by 
introducing a line search. As we cannot always analyse the objective function for large 
scale models as we cannot store the covariance matrix of the model parameters and 
invert it, we perform the line search by comparing the modelled heads with the linear 
expansions of equation (5). 
 
 
PRACTICAL EXPERIENCE 
 
A first advantage is the fact that errors in the model concept are revealed easily using 
the inverse model. As the inverse model has the flexibility to update parameters 
strongly at locations where measurements tell them to, the inverse model will 
immediately do so if measurement residuals are large due to errors in the model 
concept. Analysis of the results of the inverse model can then lead to significant 
improvements in the model concept. In fact, clients are usually directly involved in the 
calibration process with the inverse model, as their knowledge of the (local) 
groundwater system often plays a key role in understanding the behaviour of the 
residuals. 
 Secondly, regional or local trends in parameters can be revealed with the 
representer-based inverse algorithm can. For example, in one case we obtained 
evidence of an unanticipated—at least by us—regional trend in the hydraulic conduc-
tivity of a model layer. Geological research revealed a sound geological explanation 
for this regional trend. If we had used an inverse model with a predefined zone for this 
layer, we would not have discovered this property.  
 A third advantage that we address is that the uncertainty of the modelled state 
variables can be verified, based on the information in the measurements, by using a 
straightforward cross-validation. Consequently we can produce reliability maps which 
are extremely valuable for a.o. optimization of monitoring networks.    
 
 
CONVERGENCE PROBLEMS FOR NONLINEAR GROUNDWATER 
MODELS 
 
Problems we encounter in real world groundwater modelling studies are often related 
to convergence problems for nonlinear, nondifferentiable packages of the groundwater 
model, especially drains. Whether or not a drain is discharging may give a totally 
different behaviour of the groundwater model and the sensitivity of some model 
parameters. In one inverse iteration the model parameters are updated strongly by 
some measurements (parameters are sensitive when drains do not discharge), whereas 
in the next iteration the parameters are insensitive because the drains are discharging 
strongly. Consequently, the prior model terms want to keep these parameters close to 
their prior mean. The resulting oscillation strongly reduces the inverse algorithm’s 
efficiency. As a first solution of this problem, we extended the drain package by 
incorporating a quadratic relation between heads and discharge for a small trajectory, 
which improved the efficiency. Currently, we also use time-variant inverse models, 
which may overcome these efficiency problems. 
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Fig. 1 Schematization of illustrative example. 

 
 
 Here we illustrate the disturbing behaviour of drains by a simple 1-D example with 
a constant recharge of 1 mm day-1 to an aquifer with a constant conductivity, Fig. 1. 
Variations of the saturated thickness of the aquifer are negligible compared to the 
thickness of the aquifer. Thus transmissivity can be assumed constant. 

The left boundary is a constant head boundary with a value 0 m, and the right 
boundary at a distance of 100 m is a no-flow boundary which also has a drain with a 
drainage level of 1 m and an infinitely large drainage conductance. Depending on the 
value of the transmissivity T, the drain is active or not active. When we are estimating 
the lnT of this aquifer using the Bayesian objective function with a head measurement 
at the right boundary of 1.05 m and a standard deviation of 0.1 m; a prior mean of lnT 
= ln 6 m2 day-1 and a standard deviation of 1.0, the objective function is as shown in 
Fig. 2. 
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Fig. 2 Value of the objective function as a function of lnT. 
 
 

The objective function has a minimum value for lnT of about 1.6. In this minimum 
the objective function is not differentiable due to the nonlinear behaviour of the drain. 

When performing an optimization with any second order optimization algorithm, it 
will not arrive at this minimum. If arrived at a lower estimate of lnT, the optimization 
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algorithm predicts an optimum at T = 6 m2 day-1: The sensitivity of the head is zero as 
the drain is active and the optimization algorithm wants to go back to the prior mean of 
lnT. If it arrives at an estimate of lnT that is higher than the optimum, the optimization 
algorithm estimates the optimum value at approximately ln 4.8 as the drain is not 
presently active. Therefore the optimization algorithm will oscillate around its 
minimum but never arrive there. Performing a line search will improve the search, but 
can never find a minimum in which the gradient is zero or in which any linearization 
tells us we have arrived at the optimal head value. 

In practice, we found that this oscillating phenomenon is very annoying for our 
optimization algorithm. When building a model, we often put drains with large 
conductance at the surface level in order to prevent simulating heads to be above 
surface level. During our optimization, which includes a line search, very small steps 
are made within the line search as a result of this oscillating behaviour. At different 
parts of the model, large improvements were still to be made but progress was very 
slow due to the small steps taken in the line search. 

After analysing this behaviour we obtained two possible ways to prevent this slow 
improvement of the inverse algorithm. The first is to make our model time variant as it 
is likely that during part of the simulation period heads are above and below the 
drainage level, which prevents sensitivities becoming zero. The second way is to 
replace the nondifferentiable drain function by a similar differentiable drain function.  
 
 
DISCUSSION 
 
The Bayesian estimation method discussed in this paper is a very promising tool for 
improving groundwater flow models using measurements of hydraulic heads. The 
method has the advantage that it does not need a user-defined parameterization and it 
balances the uncertainty from model parameters and measurement errors consistently. 
In real world model studies the measurement errors are often considerable and when 
they are not handled correctly, the inverse model results are often questionable.  

Nonlinear groundwater flow problems may cause trouble for the inverse 
procedure. In this paper an example is given of the nondifferentiable drain function in 
which the objective function may not be differentiable in its optimum. In such cases 
any inverse algorithm based on a zero gradient of the objective function with respect to 
the model parameters will show convergence problems.  
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