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Abstract This paper describes a reduced model for groundwater flow that 
reduces the computational burden necessary for inverse modelling. The 
formulation follows from a projection of the original groundwater flow 
equation upon a set of basis vectors (i.e. patterns). Those patterns are 
computed by a decomposition of the covariance matrix for an ensemble of 
model evaluations. These represent the model behaviour with respect to model 
forces and a set of estimation parameters. By projecting (mapping) the original 
equations upon those patterns, a reduced model is obtained that can be used to 
solve a minimization problem with negligible computational costs. For several 
synthetic cases this reduced model found the global minimum more efficiently 
than the original model using adjoints or finite differences. 
Keywords adjoint; Galerkin projection; inverse modelling; reduced model 

 
 
 
INTRODUCTION AND BACKGROUND INFORMATION 
 
Inverse modelling (Tarantola, 1987) is known as computing a model that satisfies 
(invert) a given observation most optimally. It is widely accepted that a model 
therefore becomes more reliable. Extensive reviews of inverse models in geohydrology 
are given by Cooley (1985) and Yeh (1986), among others. 
 Nowadays, these models consist of large model networks that describe reality in 
more and more detail, and as a consequence, the computational demands are increased. 
The time efficiency can be roughly increased by: (a) using a more efficient solver (e.g. 
Mehl & Hill, 2001), (b) applying a coarse grid and/or a locally refined grid (e.g. Wen 
et al., 2003), and/or (c) formulating a reduced model (e.g. Vermeulen et al., 2004a,b; 
2005a,b,c). In this paper we estimate parameters by means of an extended version of a 
reduced model via a Galerkin projection. 
 
 
 
METHODOLOGY 
 
A reduced model is based upon the assumption that the spatial distribution of the 
hydraulic head is very complex, contrary to its behaviour in time. In this situation, the 
hydraulic head can be split into a spatial and time-variant component, so: 
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where h (m) is the hydraulic head,  (m) is some kind of reference, r (m) is the 
reduced equivalent of h, and p

'h
j is the jth pattern out of a set of patterns. Those patterns 

span a subspace of the original space, and describe the characteristic behaviour of the 
model, acquired by model evaluations (i.e. snapshots), e.g. Vermeulen et al. (2004a,b). 
Among others, these patterns are known as Empirical Orthogonal Functions (EOFs). 
The set of patterns are used to create a reduced model for which its application is 
limited to the variance described by the patterns, Fig. 1(a). 
 

 

Original Model 

Patterns (EOFs) 

Reduced Model 

Current Parameters Forward Simulation 

Adjoint Simulation 

Gradient Computation 

Forward Simulation 

Sub Optimal Parameters 

improve parameters line-search 

snapshots 

(a) (b) 

Fig. 1 Flow chart of the methodology: (a) Preparation phase that consists of 
simulating several snapshots by means of the original model that are described by 
patterns in order to form a reduced model. (b) The reduced model is then used to 
perform an optimization process that yields (sub) optimal parameters. The processes 
(a) and (b) reiterate until the innovation of the parameters is negligible. 

 
 

The major advantage is that the optimization of the estimation parameters can be 
done with the reduced model only (Fig. 1(b)) and consumes a negligible amount of 
computation time. It yields an optimal set of parameters for the current reduced model 
that can be still sub optimal for the original model. Therefore, the sequence reiterates 
(Fig. 1(a) and (b)) until the maximal parameter update is less than a given abortion 
criterion. 
 
 
REDUCED MODEL 
 
Introduction 
 
The term “reduced model” is here referred to as a dynamic model formulation that 
represents the original hydraulic head h by a reduced head r. This type of represent-
tation has been applied in many different fields of science (Cazemier et al., 1998; Park 
et al., 1999) and in groundwater flow by Vermeulen et al. (2004a,b; 2005a,b). The 
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method can be concisely summarized by stating that the original partial differential 
equation (PDE) is substituted by equation (1) and the outcome is projected onto the set 
of patterns. 
 
 
Patterns 
 
A set of patterns P should reflect the model variance, but there is a trade-off as to what 
extent this variance should be represented. Since, the reduced model is used for inverse 
modelling, the patterns should describe the variance for the locations of observations 
with respect to the parameters, only. A common method is to simulate the original 
model for several samples of parameters (Latin Hypercube Sampling (Iman & 
Shortencarier, 1984)) and extract the hydraulic head h for the locations of 
observations. By storing them into a matrix H, the patterns are eventually equal to the 
eigenvectors of the covariance matrix HHT. It should be noticed that the resulting 
reduced model will be only applicable to the simulation sequence, as used by the 
computation of H.  
 
 
Reduced forward model 
 
The Galerkin method substitutes the hydraulic head h in the original PDE by the linear 
equation (1). Since the jth estimation parameter αj affects the transmissivity T, we add 
the first derivative of the hydraulic conductance C with respect to αj, so: 
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where C is the harmonic hydraulic conductance (day-1) and is a function of the current 
parameters ' , S is a main diagonal matrix that contains the storage coefficient (–), 
vector q is the specified flux (m day

α
-1), Cd represents the conductance (day-1) of (non)-

linear external forces (e.g. drainage conductance) and are therefore subject to an 
internal iteration cycle ζ, and z (m) is some reference level for external forces (e.g. 
drainage level). Equation (2) can be simplified by computing the second-order 
differentials of the pattern derivative of space in advance and multiplying each term 
with the patterns: 
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where  and denotes the reduced equivalent of the current matrix or vector 
. The reduced model is initialized by  and 

( ) ( ).. Tr P=
( ). )()( T

00 tt hPr = 0.0≠αΔ j . During the 
simulation, the conductance Cd needs to be recurrently evaluated for nonlinear 
elements that decrease the efficiency. However, high efficiencies are still achieved 
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(Vermeulen et al., 2004a,b), since the dimensions of the reduced model (i.e. number of 
estimation parameters plus the number of patterns), is significantly less than the 
dimensions of the original model (i.e. number of nodes).  
 
 
Reduced inverse model 
 
There are many different ways to formulate the objective function and in this paper a 
general objective function J is defined that describes the weighted sum of squared 
residuals between a set of observations yo(t1,tn) and the computed observation Pr(t1,tn):  
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where R is the observational error covariance. Since the reduced model in equation (3) 
is quite simple, the tangent gradient can be obtained by Lagrange multipliers (Courant 
& Hilbert, 1953), yielding:  
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where λr is the reduced adjoint state computed by a reduced adjoint model that needs 
to be solved backwards in time (Vermeulen et al., 2005b):  
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 Once the gradient of J is known, equation (3) is used again to explore the 
evaluation of J along the current gradient (i.e. line-search). From a renewed location 
along that gradient, equation (5) is used again to update the current gradient; see  
Fig. 1(b). As both models are low-dimensional, the minimization requires a negligible 
amount of time. 
 
 
SYNTHETIC CASE 
 
Introduction 
 
The efficiency and performance of the reduced model depends on whether the guessed 
estimation parameter αj

g is in range of its optimal value αj
t. To obtain insight in to the 

robustness of the method, different samples of αj
g were generated (Iman & 

Shortencarier, 1984) from which J was minimized. The quality of these optimizations 
is determined by the error criterion: 
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that gives a relative error between the initial parameters and the estimated parameters. 
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For reasons of comparison, we have also minimized those problems with the original 
model using gradients according to adjoints or finite differences. 
 
 
Problem description 
 
The synthetic case corresponds to a network of seven columns by seven rows with Δx 
= Δy = 10 m, T = 100 m2 day-1, and S = 0.27 for the entire model domain. The left side 
of the model was determined by Dirichlet boundaries (h = 0.0 m). Each node within 
the other area was subject to }42,...,1{; ∈α jTj  and yielded 42 synthetic observations 
yj

o(t1,tn), so eventually, 42 parameters were optimized. 
 Two pumping wells were located at (3,4) and (6,5) that varied randomly –200 < 
qi(t1,tn) < 200 m3 day-1. A nonlinear drainage element was active along the entire 
column 4 with z(t1,tn) = 0.0 m and Cd = 10 m2 day-1. The system was simulated for 10 
time steps with Δt = 10 days.  
 
 
Results 
 
For relatively simple disturbances of αj

g, both the reduced model and the original 
models (gradient according to adjoints or finite differences) estimated the correct 
parameters (Fig. 2). However, the original model failed as the initial relative error was 
increased (ε > 500–1000%). Of course, this conclusion is rather specific for the 
application considered, but the reduced model always converged and was shown to be 
more robust. 
 The final efficiency of the reduced model is expressed by the number of original 
model evaluations. As expected, the efficiency for all models decreases whenever the 
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Fig. 2 Accuracy of the final estimation after optimizations by three different types of 
model for different initial parameters. 
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Fig. 3 Efficiency, expressed by the number of original evaluations, for three different 
types of models for different initial parameters.  

 
 
relative initial error increases (Fig. 3). Moreover, the figure shows that the reduced 
model is more efficient than the adjoint method and even one order of magnitude more 
efficient than the finite difference method. Since this method is widely applied, it is a 
significant improvement.  
 
 
CONCLUSIONS 
 
This paper describes a parameter estimation procedure for numerical groundwater flow 
that was more efficient than classical optimization algorithms according to adjoints or 
finite differences. The procedure used a reduced model that was obtained by means of 
projection of the original PDE upon a set of patterns. These patterns were determined 
by model evaluations that described the relevant model variance with respect to the 
estimation parameters. 
 The algorithm was tested on a synthetic nonlinear case whereby the classical 
methods failed as the 42 initial parameters were significantly distorted. The reduced 
model converged more robustly and its final efficiency was higher than the efficiency 
of the original model using adjoints. Moreover, the reduced model was approximately 
one order of magnitude more efficient than the original model using the widely applied 
method of finite-differences. Even higher efficiencies are expected for more high 
dimensional problems and more complex models can be optimized using a more 
generic procedure (Vermeulen & Heemink, 2005c). 
 
 
REFERENCES 
 
Cazemier, W., Verstappen, R. W. C. P. & Veldman, A. E. P. (1998) Proper orthogonal decomposition and low-

dimensional models for driven cavity flows. Physics of Fluids 10, 1685–1699. 



Inverse modelling of groundwater flow using model reduction 
 
 

119

Cooley, R. L. (1985) A comparison of several methods of solving nonlinear regression groundwater flow problems. Water 
Resour. Res. 21(10), 1525–1538. 

Courant, R. & Hilbert, D. (1953) Methods of Mathematical Physics. Wiley Interscience, New York, USA. 
Iman, R. L. & Shortencarier, M. J. (1984) A Fortran 77 program and user’s guide for the generation of Latin Hypercube 

and random samples for use with computer models. NUREG/CR-3624, Technical Report SAND83-2365. Sandia 
National Laboratories, Albuquerque, New Mexico. 

Mehl, S. W. & Hill, M. C. (2001) MODFLOW-2000, the U.S. Geological Survey modular ground-water model. User 
guide to the Link-AMG (LMG) package for solving matrix equations using an algebraic multigrid solver. US Geol. 
Survey Open-File Report 01-177. 

Park, H. M., Chung, O. Y. & Lee, J. H. (1999) On the solution of inverse heat transfer problem using the Karhunen-Loève 
Galerkin method. Int. J. Heat and Mass Transfer 42, 127–142. 

Tarantola, A. (1987) Inverse Problem Theory (2nd edn). Elsevier, Amsterdam, The Netherlands. 
Vermeulen, P. T. M., Heemink, A. W. & te Stroet, C. B. M. (2004a) Low-dimensional modeling of numerical groundwater 

flow. Hydrol. Process. 18, 1487–1504. 
Vermeulen, P. T. M., Heemink, A. W. & te Stroet, C. B. M. (2004b) Reduced models for linear groundwater flow models 

using empirical orthogonal functions. Adv. Water Res. 27(1), 57–69. 
Vermeulen, P. T. M., Heemink, A. W. & Valstar, J. R. (2005a) Inverse modeling of groundwater flow using model 

reduction. Water Resour. Res. 41, W06003, doi:10.1029/2004WR003698. 
Vermeulen, P. T. M. & Heemink, A. W. (2005b) Efficient inverse modelling of transient non-linear groundwater flow 

using model reduction. Water Resour. Res. (submitted). 
Vermeulen, P. T. M. & Heemink, A. W. (2005c) Model-reduced variational data assimilation. Month. Weath. Rev. 

(accepted November 2005). 
Wen, X. H., Durlofsky, L. J. & Edwards, M. G. (2003) Use of border regions for improved permeability upscaling. Math. 

Geology 35, 521–547. 
Yeh, W. W. G. (1986) Review of parameter identification procedures in groundwater hydrology: the inverse problem. 

Water Resour. Res. 22(2), 95–108. 
 



 
 

 


