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Abstract Even under the simple linear isotherm adsorption model, the 
parameters controlling adsorption under field conditions are frequently 
approximated by the values derived from batch experiments. First, the measure-
ment scale and conditions are very different from those at the model scale. 
Second, the parameters are heterogeneous in space and, at most, there is some 
information about them at a few locations within an aquifer. For these two 
reasons, there is a need to consider how to treat the heterogeneity of the 
parameters that control adsorption, i.e. the retardation factor or distribution 
coefficient, and a need to establish upscaling rules to transfer the information 
about parameters at the measurement scale to those at the scale of model grid 
blocks. This paper presents some best upscaling rules for the distribution 
coefficient accounting for different heterogeneous structures for both the 
hydraulic conductivity and the distribution coefficient. Exhaustive numerical 
simulations are carried out by combining different heterogeneity patterns of 
the hydraulic conductivity and the distribution coefficient, the cross-
correlation between them, overall degree of variability, and time dependence. 
It is demonstrated that under certain conditions, e.g. large variances and small 
correlation lengths of hydraulic conductivity lnK(x) and distribution coef-
ficient lnKd(x), the geometric mean is a good approximation for the upscaled 
retardation factor. 
Keywords distribution coefficient; geometric mean; retardation factor; rules; upscaling  

 
 
INTRODUCTION 
 
Sorption processes occurring during radionuclide transport in the groundwater system 
can greatly modify the travel times of dissolved contaminants and, consequently, 
constitute an important factor regarding the long-term safety assessment of deep 
geological disposal of high activity and long-life radioactive waste. The conceptual 
model of sorption relies on the distribution coefficient, which defines the distribution 
of solute mass between the solid and liquid phases. Since hydrocarbons tend to sorb 
onto the solid grains by sorption processes, sorption causes solute retention which is of 
special importance in the context of the natural attenuation of contaminants from 
hydrocarbon releases; for instance, as a consequence of sorption, most spills of 
hydrocarbons from underground tanks go unnoticed as contaminant plumes can not 
travel much away from the release location.  

Sorption is also especially important in the design of deep geological underground 
repositories for the disposal of radionuclide wastes, since proper modelling of the 
sorption processes can make the difference between acceptance and rejection of a 
given field site. In all cases, the numerical models used for the spatio-temporal 
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prediction of solute migration use a discretization of the space with blocks much larger 
than the samples taken to the laboratory to determine distribution coefficients. At the 
same time, the distribution coefficient is not homogeneous in space. For these two 
reasons: the disparity of scales between measurements and modelling, and the spatial 
heterogeneity, it is necessary to derive some upscaling rules that will allow definition 
of equivalent distribution coefficients or retardation factors over areas compatible with 
the size of the numerical model blocks in a manner such that the behaviour of the 
model is, in some average terms, similar to that of the real, heterogeneous, and 
sparsely sampled aquifer.  

This paper builds up these rules by examining some potential controlling factors 
for upscaling retardation factors by synthetic simulations. It combines different hetero-
geneity patterns of hydraulic conductivity and distribution coefficient, cross-correlat-
ion between them and the overall degree of variability. The effects of spatial variable 
porosity and local dispersion coefficient are also examined. 
 
 
METHOD 
 
We assume that the hydraulic conductivity (K) and the distribution coefficient (Kd) 
fields are log-normally distributed with the same exponential covariance function of 
the log values, which are modelled by joint multi-lognormal random functions. A 2-D 
isotropic aquifer is chosen to simulate the flow and transport of solutes. The unit-free 
size of domain is 200 × 200 which is discretized into 100 × 100 cells, each grid cell of 
size 2 × 2. Both random fields are correlated and are generated by GCOSIM3D 
(Gómez-Hernández & Journel, 1993). Three kinds of relationships between lnK(x) and 
lnKd(x) are considered, i.e. negative-, positive-, and non-correlated.  

The numerical simulations are designed with mean uniform flow conditions in a 
square field with prescribed heads on two opposite sides and impermeable boundaries 
at the other two faces. The five-point block-centred finite-difference method is employed 
to solve the steady-state flow problem. The imposed mean hydraulic gradient is 0.05 
along the x-direction. The transport equation solver adopts a Random Walk Particle 
Tracking Scheme (Wen & Gómez-Hernández, 1996). For each realization of the 
random fields, 40 000 particles are released from the left boundary and tracked down 
until they exit the domain. The release source of particles covers the entire left 
boundary and, thus, the particles can largely sample the entire lnK(x) and lnKd(x) fields 
when they move along with groundwater flow. 
 The main idea for calculating a block equivalent retardation factor RV is to seek a 
single value, representative of the retardation factor field, R(x), which is capable of 
reproducing the simulated mass flux breakthrough curve obtained for the hetero-
geneous media when applied to the homogeneous transport equation. Since it is 
impossible to find a single value to match the entire breakthrough curve, three 
equivalent values are separately calculated at different matching points, i.e. 5%

VR , 50%
VR , 

and 95%
VR , which are, respectively, denoted to the early, median and late arrival time of 

particles. It should be emphasized that the selection of the most appropriate part of the 
breakthrough curve and its corresponding retardation factor is a very important step for 
the correct application of retardation factors in engineering environmental problems 
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such as monitoring the extent and degree of groundwater contamination from a known 
source. The 5%

VR  better reproduces the first part of the breakthrough curves and 
represents the fastest particles arriving at a control plane as needed for the design of a 
radioactive underground repository. The 50%

VR  reproduces the median part of the 
breakthrough curve and reflects the portion of particles arriving at a control plane with 
high frequency. The 95%

VR  reproduces the tail of the breakthrough curve and denotes 
the slowest particles arriving at a control plane as needed for mass removal 
calculations in remediation problems. 

In some cases the block retardation factor is more influenced by low point values 
within the block domain, in other cases the high point values are more influential. The 
power-transform of the original variable, R(x), allows focusing on either low or high 
values. Following the lines of power averaging formulae introduced for calculating the 
equivalent hydraulic conductivity (Journel et al., 1986; Gómez-Hernández & Gorelick, 
1989), we can obtain p norm distribution patterns of the block equivalent retardation 
factors using the following formula: 
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where n is the number of grid-cells or retardation factor measurements within the R(x) 
random field, and Ri(x) refers to the value of retardation factor assigned to the ith grid-
cell. If p > 1, the equivalent retardation factor RV is mostly influenced by larger values; 
if p = 1, the equivalent retardation factor RV coincides with the arithmetic average and 
all Ri(x) values receive equal weight; if p = 0, RV corresponds to the geometric 
average; and if p = –1, RV is equivalent to the harmonic average where RV is mostly 
influenced by lower point values (Journel, 1999).  
 
 
RESULTS 
 
Effect of cross-correlation 
 
The upscaled retardation factor is highly affected by the cross-correlation between log 
hydraulic conductivity and log distribution coefficient (denoted herein with the symbol 
ρ). For a strong negative correlation, e.g. ρ = –0.75, the block equivalent retardation 
factor for early times 5%

VR  is smaller than the one corresponding to late time arrivals 
95%
VR , while, for a strong positive correlation, e.g. ρ = 1, the block equivalent retard-

ation factor at early time is larger than those associated with late arrival times (Fig. 1). 
It is also noted that for a weak negative correlation, e.g. ρ = –0.25, the block 
retardation factor shares the same trend as for strong negative correlation coefficients.  

The block RV value based on the front of the breakthrough curve and its analogous 
value for the tail of the breakthrough curve, are remarkably different due to the time-
dependence of retardation factors. This implies that an upscaling scheme should be 
adjusted to the specific engineering aim. For example, the p norm estimation for a goal 
of removing contaminants should be larger than the one required for monitoring the  
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Fig. 1 Effect of cross-correlation and correlation length of both lnK(x) and lnKd(x) on 
the upscaled retardation factor. The left column shows the p distribution of a smaller 
variance (σ2 = 0.1) and the right column shows that of a larger variance (σ2 = 1). The 
first row shows the p distribution of early arrival particles (5%), the second row shows 
that of median arrival particles (50%), and the third shows that of late arrival particles 
(95%). The cross-correlation coefficient ρ shown in each of the graphs ranges from  
–0.75 to 1. The correlation length of both lnK and lnKd(x) ranges from 1 grid-cell to 
100 grid-cells as shown in the x axis. 
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Fig. 2 Effect of variance of both lnK(x) and lnKd(x) on the upscaled retardation factor. 
The left column shows the p distribution of a smaller correlation length (ly = 1 grid-
cell) and the right one shows that of a larger correlation length (ly = 10 grid-cells). The 
first row shows the p distribution of early arrival particles (5%), the second row shows 
that of median arrival particles (50%), and the third shows that of late arrival particles 
(95%). The cross-correlation coefficient ρ shown in each of the pictures ranges from  
–0.75 to 1. The variance σ2 ranges from 0.1 to 6 as shown in the x axis. 
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earliest arrival of contaminants if a negative correlation between hydraulic conduc-
tivity and distribution coefficient is observed at the field scale. Otherwise, if the 
correlation coefficient is positive, the former should be smaller than the latter. 
 
 
Effect of correlation length 
 
Figure 1 shows that the power factor p as a function of the correlation length, it is 
noted that RV seems to approach to the geometric mean (p = 0), as the correlation 
length decreases. Thus, it is still proper to use the geometric mean as the upscaled 
retardation factor RV as long as the size of the grid-block is relatively smaller than the 
correlation length. As a general rule, if the correlation coefficient between lnK(x) and 
lnR(x) is perfectly negative or positive, then RV is, respectively, larger or smaller than 
the geometric mean, while for mild correlation coefficients RV resides between both 
limits. There are some exceptions that may be caused by the fluctuation of the plume 
moments of a specific realization when we generate the hydraulic conductivity and 
distribution coefficient fields.  
 
 
Effect of variance 
 
As can be seen from Fig. 1, the degree of heterogeneity, i.e. the variance of both the 
hydraulic conductivity and the retardation factor fields, has a large influence on the 
block equivalent retardation factor.  

Figure 2 illustrates that the block equivalent retardation factor converges to the 
geometric mean of the random fields as the variance increases. The pattern is more 
apparent as the correlation length increases. Yet, in this peculiar case, the influence has 
a direct relationship with the correlation coefficient between lnK(x) and lnKd(x). For 

5%
VR , the geometric mean will overestimate the upscaled value RV in the case of perfect 

negative correlation, but underestimate the upscaled value in the case of perfect positive 
correlation. For 95%

VR , the effect is just the opposite; the geometric mean will under-
estimate the upscaled value in the case of perfect negative correlation but overestimate 
the upscaled value in the case of a perfect positive correlation. 
 
 
CONCLUSIONS 
 
We have conducted bidimensional reactive transport simulations in correlated lnK(x) 
and lnKd(x) heterogeneous random fields to find a block equivalent retardation factor. 
It is shown that the upscaled retardation factor is a function of the correlation length 
and variance of the hydraulic conductivity and the distribution coefficient as well as 
cross-correlation between them. Cross-correlation plays an essential role in upscaling 
the retardation factor. For a negative correlation, the upscaled retardation factor at 
early time is smaller than that at late time; for a positive correlation, the block value at 
early time is larger than that at late time. The block retardation factor tends to converge 
to the geometric mean of a field as the variance increases, which is more apparent for 
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larger correlation lengths. The geometric mean of the random field is a good 
approximation of the equivalent retardation factor under certain conditions, e.g. a short 
correlation length and relatively large variance. An upscaling scheme should be 
tailored to the specific engineering aim due to the time-dependence of retardation. 
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