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Abstract One of the most crucial decisions to properly model transport is the 
choice of upscaled transport parameters (dispersivities and porosity) to be 
used in a numerical model for a given grid size and problem scale. Here we 
study block-upscaling of transport parameters of the classical advection–
dispersion equation (ADE) to describe the spreading of a nonreactive solute 
migrating within a single realization of a heterogeneous transmissivity field. 
We start by assuming that solute transport can be modelled by a local scale 
ADE, which we employ to solve a concentration field on a finely discretized 
grid. The latter is taken as the ground truth against which we compare results 
from an upscaling procedure. The effect of increasing size of (constant, 
upscaled) transmissivity blocks is assessed upon employing an inverse transport 
model, the outputs of which are the (constant, upscaled) dispersivities provid-
ing a best fit against sampled concentrations at given observation times. Our 
results provide a set of rules-of-thumb to be used in order to obtain meaningful 
upscaled parameters. 
Keywords heterogeneous media; inverse modelling; numerical modelling; transport; upscaling 

 
 
INTRODUCTION 
 
Reliable groundwater flow and transport modelling results are needed to properly 
assess the status of groundwater contamination and the appropriateness of possible 
remediation scenarios. Most existing modelling codes are based on the assumption that 
the advection–dispersion equation (ADE) is applicable at some observation scale and 
describe aquifer properties as distributed over a discrete number of homogeneous 
regions. Unfortunately, inaccurate modelling of natural variability leads to simulated 
plumes which poorly represent reality (e.g. Carrera, 1993). Key features which are not 
modelled by the ADE include: (a) the apparent increase of dispersivity with scale,  
(b) the strong tailing of breakthrough curves, often showing power law behaviour, and 
(c) the directional dependence of apparent porosity. 

One way to overcome these effects involves solving the ADE at the pore scale. 
This is a formidable task in itself, since it involves collecting high-resolution three-
dimensional data sets. Furthermore, one would need to numerically solve flow and 
transport at a fine scale which would exceed by far today’s computers’ capacities. A 
different approach to the problem relies on defining some upscaled parameters to be 
used in conjunction with appropriate equations, which are capable of reproducing the 
relevant details of the flow and transport processes at the required scale. The upscaled 
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parameters are typically a result of averaging in the physical space and should 
incorporate the effect of uncertainty of the smaller scales without the need to actually 
resolve them. 

The objectives of this paper are precisely: (a) to study upscaling to properly model 
the actual spreading of a nonreactive solute plume, and (b) to provide some insights on 
the physical meaning of block-upscaled transport parameters, which are employed to 
provide best estimates of the smaller-scale transport processes. 
 
 
TRANSPORT UPSCALING 
 
A key question one should answer is the definition of a set of criteria to obtain 
“reasonable” upscaled results. A first approach to upscaling is based on the macro-
dispersion concept (Gelhar & Axness, 1983). The resulting transport equation has the 
same form as the local ADE with a macrodispersion tensor replacing the dispersion 
tensor. Rubin and co-workers (Rubin et al., 1999) generalized this approach for block-
upscaling and model the low frequency fluctuations of the velocity on the numerical 
grid and the large frequency fluctuations within the macrodispersion tensor. All these 
approaches are based on ensemble averages. As such, they are applicable only for large 
spatial (and time) scales, and thus are of limited use for many real problems, where one 
is typically interested in relatively short distances and travel times. To overcome this 
problem Kitanidis (1988) introduced the concept of “effective” dispersivity, derived as 
the average dispersion around the centre of gravity of the solute plume from all 
(ensemble) realizations rather than the dispersion of the ensemble average of concen-
tration distributions. 
 Typically, all these approaches are driven by the underlying idea that it is possible 
to obtain upscaled transport parameters which allow reproduction of the actual plume 
spreading by matching some predicted spatial or temporal moments of the plume 
against measurements taken in the field. This might be sufficient for conservative 
transport, which is the focus of this work, but can be inappropriate in the presence of 
chemical reactions or biodegradation, when mixing becomes the relevant process. 
Following this reasoning, we focus on an upscaling procedure which is based on the 
calibration of upscaled transport parameters upon embedding transport within an 
inverse modelling algorithm. The latter provides (upscaled) dispersivities and retard-
ation which render the best fit against measured space–time concentration data for a 
given observation time and block size. The need for including a retardation factor is 
because we look at a single realization of a heterogeneous field and not at an ensemble, 
which might change the mean velocity. In this paper we concentrate entirely on the 
effects on longitudinal dispersivity. 
 
 
METHODOLOGY 
 
Our approach is based on the assumption that the ADE is valid on a small scale (e.g. 
pore scale). We then simulate steady-state seepage flow and transport of a nonreactive 
contaminant within a single realization of the rectangular heterogeneous aquifer 
depicted in Fig. 1. The field is discretized by 1024 × 512 square cells of unit side.  
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Fig. 1 Configuration of the simulation. In the upper right corner are the varying block 
sizes (grey) for the estimation of the upscaled transport parameters indicated. 

 
 
The boundary conditions are depicted in Fig. 1. Solute is injected uniformly (unit 
concentration) within a rectangular area of sides 16 × 8 (Fig. 1), while the initial con-
centration in the domain is zero. Boundary conditions for the transport problem are 
reported in Fig. 1. The Gaussian sequential simulator GCOSIM3D (Gómez-Hernández 
& Journel, 1993) was used to generate one unconditional realization of the ensemble 
natural logarithm of transmissivity characterized by a unit variance, geometric mean, 
TG = 10-3 (in consistent units), and spherical correlation with correlation length, λ = 
384. Note that the length of the domain along the dominant flow direction is less than 
3λ. Porosity is taken as 0.3, while the longitudinal and transverse dispersivities are 
respectively taken as αL = 10 and αT = 1 unit length. Flow and transport are solved by 
finite elements and transport is modelled for a total elapsed time of 6 × 106 time units. 
 Concentration is then sampled at 561 observation points, uniformly distributed in 
the domain, to provide an adequate spatial characterization of the plume. These 
measurements constitute the reference data set against which we analyse the results of 
the upscaling procedure. Upscaling of transport parameters is performed according to 
the following steps: (a) a size, L, for the (square) upscaled blocks is fixed; (b) the 
original, fine-scale, transmissivity is upscaled as the geometric mean of the local trans-
missivities included in a given, large-scale block; (c) inverse modelling of transport 
(Medina & Carrera, 1996) is then performed for the upscaled transmissivity field. 
These steps are repeated using the same original field for different upscaled blocks of 
transmissivity, i.e. L* = L/λ = 1/24, 1/12, 1/6, 1/3, 2/3 and ∞ (effective transmissivity; 
Fig. 2), and for all observation times. A fixed numerical grid, with rectangular 8 × 4 
cells, was used in the inverse procedure, regardless of the value of L, to avoid the 
contribution of grid variability.  
 For a given observation time, the block-upscaled dispersivity is thus evaluated as 
the constant parameters rendering a best fit between the concentrations measured on 
the fine-grid reference field and those simulated on the upscaling domain. This 
procedure provides the functional dependence of upscaled dispersivities and retard-
ation coefficient on relative block size, L*, and observation time. It is emphasized that 
the inverse procedure renders constant transport parameters for each observation  
time. 
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(c) 

Fig. 2 Transmissivity field plotted as lnT for different block sizes: (a) original field, 
(b) L* = 1/12, and (c) L* = 1/3. 

 
 
NUMERICAL RESULTS 
 
Figure 3 depicts the observed plume for the fine-grid reference field at two sampling 
intervals. The apparent time-dependence of longitudinal dispersivity is then reported in 
Fig. 4, following two different methodologies: first, as the actual time-derivative of the 
observation time. While the first definition represents the actual dispersivity if the 
model would adopt it each time step, the second definition represents the constant 
dispersivity needed to reproduce the shape of the plume at one certain time step. Both 
the plume shape and the apparent variation in field dispersivity are typical of 
anomalous transport. 

The influence of the block size on the flow field is evident in Fig. 5, where one can 
see that while the reference flow lines are still well reproduced when L* ≈ 1/12, a 
choice of L* ≈ 1/3 renders a smoothed flow field (in the limit of upscaling to a single 
block, one would have parallel flow lines). 
 Figure 6 depicts the dependence of block-scale longitudinal dispersivity estimated 
by our inverse procedure on the relative block size, L*, for two different observation 
times. The values of the longitudinal local-scale and calculated averaged field  
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(b) (a) 

Fig. 3 Simulated plume as logarithmic concentrations for two observation times:  
(a) 7.5 × 105, and (b) 1.5 × 106. 
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Fig. 4 Field dispersivities (actual and averaged) derived from the moments of the 
simulated plume: calculated as the actual derivative between two time steps and as an 
average over time. Local dispersivity is given for comparison. 
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Fig. 5 Comparison of original stream lines (solid lines) and those resulting from the 
upscaling procedure with block sizes of L* = 1/12 and L* = 1/3 (dashed lines). 
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(b)

Fig. 6 Longitudinal dispersivity against block size for two observation times:  
(a) 7.5 × 105, and (b) 1.5 × 106.  
 

 
dispersivity (Fig. 4) are also reported for comparison. The salient points to be noted 
are: (a) increasing L* generally causes the block-dispersivity to increase; and (b) when 
L* > 1/3 the inverse procedure renders meaningless block-dispersivity values, as 
reflected by the apparent decrease of the dispersivity values needed to fit the sampled 
concentrations for a given observation time. 

The ability to obtain a meaningful reproduction of the fine-scale reference 
concentration field is clearly seen from Fig. 7, which depicts three snapshots of the 
plume resulting from the inverse procedure for L* ≈ 1/12, 1/3 and for the effective T.   
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(c) 

Fig. 7 Upscaled plumes as logarithmic concentration for time 1.5 × 106 for three grid 
discretizations: (a) L* = 1/12, (b) L* = 1/3, and (c) with effective T(L* = ∞).  

 
 
 Upon comparing these with Fig. 3(b) and on the basis of Fig. 5 one can see that the 
main features of the plume are well reproduced when L* ≤ 1/3, while large (relative to 
the correlation scale of the underlying local transmissivity field) upscaled blocks are 
not capable of capturing the salient features of the concentration distribution, thus 
rendering meaningless the results obtained by the inverse procedure. This is most 
obvious for the extreme case of using one effective T (Fig. 7(c)) where the upscaled 
plume moves along the mean flow direction and cannot match the observed original 
plume. 
 
 
DISCUSSION 
 
The objective of this paper is to study the meaning of block-upscaling of transport 
parameters (in particular of longitudinal dispersivity) to reproduce space-time 
distributions of local-scale concentrations within a single realization of a randomly 
heterogeneous transmissivity field. Upscaled quantities are here derived as the 
parameters rendering the best reproduction of the actual concentration field by means 
of an inverse transport procedure. As such, they are generally a function of the size of 
the upscaled blocks, L, relative to the correlation scale, λ, of the local-scale trans-
missivity field, and sampling time. 

Our results suggest that when the size of the upscaled blocks is small, i.e. L* ≤ 
1/10, the reference concentration field is well reproduced, without the need to upscale 
dispersivities or retardation coefficient. For intermediate block sizes (1/10 < L* ≤ 1/3), 
reproduction of the salient features of the spatial concentration distribution at a given 
sampling time is possible with constant dispersivity and retardation values. These are 
increasing functions of L* and rapidly attain the calculated field dispersivity for small 
observation times. We conclude that adoption of L* > 1/3 does not allow determination 
of upscaled transport parameters which are capable of satisfactorily reproducing the 
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spreading of a contaminant plume within a single local-scale realization of a random 
transmissivity field due to the lateral shift of the plume’s centre of gravity.  
 
 
Acknowledgements This work was partly funded by the Departament d’Universitats, 
Recerca i Societat de la Informació of the Catalan Government. Helpful comments by 
A. Medina and M. Dentz are acknowledged. 
 
 
REFERENCES 
 
Carrera, J. (1993) An overview of uncertainties in modeling groundwater solute transport. J. Contam. Hydrol. 13, 23–48. 
Gelhar, L. W. & Axness, C. (1983) Three-dimensional stochastic analysis of macro-dispersion in aquifers. Water Resour. 

Res.  19, 161–180. 
Gómez-Hernández, J. J. & Journel, A. G. (1993) Joint sequential simulation of multi-Gaussian fields. In: Geostatistics 

Troia’92, vol. 1 (ed. by A. Soares), 85–94. Kluwer Academic Publishers, Dordrecht, The Netherlands. 
Kitanidis, P. K. (1988) Predictions by the method of moments of transport in a heterogeneous formation. J. Hydrol. 102, 

453–473. 
Medina, A. & Carrera, J. (1996) Coupled estimation of flow and transport parameters. Water Resour. Res. 32, 3063–3076. 
Rubin, Y., Sun, A., Maxwell, R. & Bellin, A. (1999) The concept of block-effective macrodispersivity and a unified 

approach for grid-scale and plume-scale-dependent transport. J. Fluid Mechanics 395, 161–180. 
 
 
 


