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Abstract The solution of the advective transport problem is difficult because 
of its intrinsic nonlinearity. The aim of this work is to present a few new 
results concerning nonlinear transport of passive solutes valid for large 
conductivity variance. The impact of high heterogeneity is twofold: (i) highly 
conductive zones may create preferential paths leading to early particle arrival 
times and large particle displacements; and (ii) the low conductive regions 
“trap” the solute particles, causing late arrival times and small particle 
displacements. The combination of the two effects (with the second one 
prevailing in highly heterogeneous aquifers) leads to continuously increasing 
values of dispersion coefficients and a departure from the classic Gaussian 
distribution of trajectories. The effects are larger for the large values of the 
log-conductivity variance. As a consequence, the transport will seem to be 
“anomalous” or “non-Fickian” for a long period of time after the injection. 
Such anomaly is evident, for example, in the tailing of the travel times and the 
trajectory PDFs. 
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INTRODUCTION AND BACKGROUND 
 
Spreading of contaminants in aquifers is caused primarily by the spatial variability of 
the water velocity V(x), that in turn stems from heterogeneity in hydraulic conductivity 
K(x). To account for the seemingly erratic variation by orders of magnitude of K, it is 
customary to model it as a random space function. Thus, Y = lnK is usually assumed to 
be normal and stationary, completely defined by the statistical mean <Y>= lnKG, the 
variance σY

2 and the two point autocorrelation ρ(x1 – x2). The latter is characterized by 

the integral scale I = dx. The simplest case of flow is the one which is 

uniform in the mean, i.e. <V> = U = const, pertinent to natural gradient flow in 
aquifers (mean flow is assumed to be in the x direction).  

∫
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 We consider a finite plume of an inert solute injected in the aquifer at t = 0. The 
contaminant concentration field C(x,t) is also random and it is customary to 
characterize the plume by its spatial moments: the mass M = ∫C(x,t)dx, the centroid  
R = M-1∫ xC(x,t)dx, the longitudinal second spatial moment (transverse spreading is not 
considered here) S = M-1∫ (x – R)2C(x,t)dx, the skewness, etc. Deriving the relationship 
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between these spatial moments and the aquifer heterogeneity, by solving the flow and 
transport equations, has been a topic of intensive research in the last 25 years (see, e.g. 
monographs by Dagan, 1989, Gelhar, 1993, and Rubin, 2003). 
 For plumes of large extent with respect to I (ergodic plumes), it was shown that:  
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where X(t;a) is the equation of the longitudinal component of the trajectory of a fluid 
particle that originates at x = a at t = 0 and X′ = X – <X> is the fluctuation. Similarly: 
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where X11 is the variance of X, and αL is the longitudinal macrodispersivity. To 
investigate longitudinal spreading we refer to the mass of the plume per unit length in 
the mean flow direction. Furthermore, for the assumed ergodic plume CC = =  

∫  C0(a)f(X;a,t) da where C0(a) is the concentration of the initial plume and f(X;a,t)is the 
PDF of X at time t of a particle originating at a. 
 If the displacements X have a Gaussian PDF it can be shown that C  satisfies the 
usual advection dispersion equation: 
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We shall use the term Gaussian for such transport. Generally, αL is a function of the 
travel time of the plume from the injection site (nonlocality). If αL becomes constant, 
transport is named Fickian. Otherwise, it is called anomalous. Molecular and pore-
scale dispersion are both Gaussian and Fickian. 
 Many solutions of flow and transport in heterogeneous aquifers were obtained in 
the past for weak heterogeneity, i.e. for σY

2 < 1. Solving the equations under a first-
order expansion in σY

2  led to the following results (e.g. Dagan, 1984): (i) X is Gaussian 
at any time if Y is normal, (ii) f(X;t,a) tends asymptotically to Gaussianity for any Y of 
finite integral scale, and (iii) αL grows with time during a “setting” period and tends to 
a constant after a travel distance of say 10 integral scales. This distance is independent 
of σY

2  and of the statistics of Y.  
 Elaborate field tests in weakly heterogeneous aquifers (e.g. Mackay et al. (1986) 
for the Borden Site, or LeBlanc et al. (1991) for Cape Cod) showed that the field 
macrodispersivity values are approximately equal to the theoretical ones. 
 As an alternative, numerical Monte Carlo simulations have been carried out in the 
past by generating grid values of Y drawn from a multi-Gaussian distribution. The 
numerical solutions, carried out primarily for 2-D flows (Bellin et al., 1992; Salandin 
& Fiorotto, 1998) showed that the numerically obtained αL is close to the first-order 
approximation for σY

2  as large as unity. 
 Recently, there has been a flurry of interest in the behaviour of highly 
heterogeneous formations (σY

2   > 1). Two topics have attracted attention:  
(i) What is the impact of log-conductivity that is not of multi-Gaussian distribution? 

While elaborate field measurements may provide the univariate PDF of Y and the 
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two point covariance, there are generally not enough data to substantiate the multi-
Gaussianity assumption. The latter implies larger integral scales of conductivity 
classes close to the mean than those pertaining to classes of extreme 
conductivities. Therefore, one of the ways to check the impact of the multi-
Gaussian assumption was to carry out numerical simulations with Y fields in which 
increased integral scales were attributed to extreme Y values (Wen & Gómez-
Hernández, 1998; Zinn & Harvey, 2003). 

(ii) How is flow and transport affected by high heterogeneity characterized by large σY
2? 

This topic is of theoretical interest and relevant to applications (e.g. Boggs et al., 
1992) as well. Numerical simulations were carried out for multi-Gaussian 
structures (Salandin & Fiorotto, 1998; Trefry et al., 2003) besides the afore-
mentioned ones. 

 These numerical simulations were carried out by conventional methods (FD, FEM) 
and were limited to 2-D configurations and finite plume sizes, due to the heavy 
computational burden. Extension to 3-D by these methods seems to be prohibitive at 
present. We have developed a different numerical approach based on the Analytic 
Elements Method. (Janković et al., 2003b). In 3-D we modelled the isotropic hetero-
geneous medium as made up from spherical inclusions embedded in a matrix of 
conductivity equal to the effective one. The conductivities of the inclusions were 
drawn from a lognormal distribution. The structure is a heterogeneous medium of a 
finite integral scale (proportional to the inclusions radii) and a nugget representing the 
same medium, but with a much smaller integral scale. The great advantage of this 
model of heterogeneity is that it permits one to achieve highly accurate solutions of 
flow and transport for high σY

2  (see results for σY
2  = 8 in the following), for domains 

and plumes of large size.  
 It is emphasized that we do not imply that in nature blocks are of spherical size. 
The model, similar to its other numerical counterparts, mimics (at any desired 
accuracy) a medium of given log-conductivity PDF and integral scale. Another impor-
tant point is that the structure is not multi-Gaussian, since the integral scale associated 
with classes of Y are equal. However, no model of a heterogeneous medium of given 
univariate PDF and two-point correlation is universal.  
 The aim here is to present the results of numerical simulations of transport for  
σY

2  = 4 and σY
2  = 8 and to elucidate the two aforementioned aspects: Is transport 

Gaussian? Is it Fickian? 
  
 
THE SET-UP AND THE NUMERICAL LABORATORY 
 
The results presented here are based on two numerical simulations. The set up of each 
simulation, described in Janković et al. (2003b), is identical except for the variance of 
log-conductivity of spherical inclusions (σY

2  = 4 for the first one and σY
2  = 8 for the 

second one) and the background conductivity which was set to the effective 
conductivity (it equals 1.558 KG for σY

2  = 4 and 2.095 KG for σY
2  = 8, following 

Janković et al., 2003a). Inclusions of constant radius R are implanted using periodic 
packing (face-centred cubic lattice) in a domain shaped as a large prolate ellipsoid with 
long semi-axis, 0.5L, equal to twice the short semi-axes. A large number of inclusions 
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(100 000) with a large volume fraction n = 0.7 yielded large L (L = 166R) required to 
achieve ergodicity. 
 This ensemble of inclusions, subject to uniform flow from infinity in the x 
direction, behaves like a single inclusion on a large scale. Following the Maxwell 
solution, the flow inside this large inclusion is uniform and oriented along the x axis 
regardless of the effective conductivity of the ensemble. Since background 
conductivity was set to the effective conductivity, the magnitude of the uniform flow 
inside equals that from infinity.  
 Particle tracking is conducted in a box 0.55L long and 0.2L wide and tall (the 
origin of the coordinate system was set at the centre of the box). The box is smaller 
than the flow domain; this was required to achieve stationary conditions for particle 
tracking. 40 000 equally spaced particles are released at the upstream boundary of the 
box (at x = –0.275L) in 200 rows and columns.  
 
 
RESULTS AND DISCUSSION 
 
This paper aims at analysing longitudinal spread. The database is made up from the 
values of the particles displacements Xi(t;a) (i = 1,…,N) at different t of the N = 40 000 
particles injected at t = 0 in the plane x = –0.275L. Due to the large, presumably 
ergodic, plume we can exchange spatial means with ensemble averaging of the displace-
ment of a single particle. A few results relevant to the two topics are discussed here. 
 
 
Is the plume Gaussian? 
 
In Fig. 1 we have represented the PDF of the longitudinal displacements for the two 
values σY

2   = 4 and σY
2  = 8, centred and normalized with respect to X11 at two times. The 

graphs represent the distribution of the mass per unit length of an ergodic plume at  
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Fig. 1 Distribution f(X;a,t) at two time instances. 
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different times, normalized by the total injected mass. If the plume were Gaussian, all 
the graph would have collapsed onto the theoretical Gaussian curve of unit variance.  
 The striking deviation from the Gaussian shape manifests in the peaks of f(X;a,t) at 
the injection zone. This effect is related to the low water velocity prevailing in 
inclusions of low conductivity on one hand, and to the uniformity of instantaneous 
initial resident concentration along the plane x = –0.275L, on the other. It causes solute 
particles to be trapped for an extended period in this zone. This effect dissipates with 
time as particles move out of the low K zones. It is also diminished by pore-scale 
dispersion and molecular diffusion (neglected here) and by injection that is propor-
tional to the flux rather than being uniform. These topics will be discussed in future 
works. However, we believe that, to a certain extent, this is a phenomenon present in 
highly heterogeneous formations. The rest of the PDF is slightly skewed with respect 
to the Gaussian distribution, with an increase of the peak and its advancement ahead of 
the centre of mass. However, in view of the various assumptions on which the model is 
based, we do not think that for most practical purposes the departure from Gaussianity 
of this part of the PDF is important. The picture is similar for the two σY

2 values with 
augmentation, however, of the mass captured in the regions of low conductivity of the 
injection zone for σY

2  = 8. 
 
 
Is transport Fickian? 
 
We have examined this topic in our previous work (Janković et al., 2003b). Here we 
present results based on a larger number of particles and extended travel time. The 
growth of the longitudinal macrodispersivity αL with time is displayed in a dimension-
less form in Fig. 2. αL was derived by integration of velocity Lagrangean covariance 
(Janković et al., 2003b) and directly by numerically differentiating the second spatial 
moment. It is seen that the two agree. 
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Fig. 2 Dimensionless dispersivity as function of dimensionless time. 
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If the first-order approximation were valid, the curves for σY
2 = 4 and σY

2  = 8 should 
have collapsed on a unique one. The difference in the magnitude of αL at a given travel 
time reflects the impact of nonlinearity, which is seen to be moderate in the time 
interval considered here. The more serious departure from the linear solution concerns 
the “setting” time. It is seen that transport becomes Fickian only for tUI-1 > 100 for σY

2 
= 4 and αL does not reach a plateau for  σY

2 = 8 at this large time. We know that 
eventually transport has to become Fickian for any σY

2, but the tendency is very slow. 
Therefore, for an observer that monitors the plume at shorter travel distances, transport 
appears to be anomalous. 
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