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Abstract Nonstationarity of groundwater flow and transport processes is 
relevant in well capture zone design and wellhead protection. We introduce a 
State-Space First-Order approach as an alternative to numerical Monte Carlo 
methods to quantify the uncertainty associated with well catchment prediction. 
The mean and covariance of system state variables (i.e. head, pore water 
velocity and particle trajectory) are approximated by a first-order Taylor’s 
series with sensitivity coefficients estimated from the adjoint operator for a 
system of discrete equations (state-space equations). By employing numerical 
solution methods, it is possible to handle irregular geometry, varying 
boundary conditions, complicated sink/source terms and different covariance 
functions, all of which are important factors for real-world applications. 
Results obtained using the State-Space First-Order method compare 
favourably with those from Monte Carlo analysis and are considerably more 
efficient. 
Keywords Monte Carlo method; nonstationarity; State-Space First-Order method;  
stochastic; well catchment 

 
 
INTRODUCTION AND BACKGROUND INFORMATION 
 
Of the aquifer properties that control the movement of water and conservative 
contaminants in the subsurface, hydraulic conductivity (or transmissivity) is generally 
the most important, as its spatial variability is considerably higher than that of other 
properties, such as porosity (Hoeksema & Kitanidis, 1984). During the last 20 years 
many stochastic theories have been developed to relate the statistical moments of 
hydraulic head, pore water velocity and other flow and mass transport quantities to 
those of transmissivity and mean flow characteristics (e.g. Zhang, 2002). Statistical 
nonstationarity of flow and mass transport processes may occur due to non-
homogeneous statistics of medium properties, complex boundary configurations or 
source/sink terms (Osnes, 1995; Guadagnini & Neuman, 1999; Riva et al., 2001). 
 Nonstationary stochastic analysis provides a method for calculating the probability 
that a given location in the aquifer contributes water to a pumping well. The problem 
has usually been studied (Guadagnini & Franzetti, 1999; van Leeuwen et al., 2000; 
Feyen et al., 2003) with a Monte Carlo framework, to determine how uncertainty in 
hydraulic parameters, mainly transmissivity, propagates to well capture/catchment 
location. Limitations of the Monte Carlo method have been discussed in the literature 
(e.g. Ballio & Guadagnini, 2004). In particular, it can be computationally very 
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demanding when conditioning transmissivity realizations on state variable measure-
ments, such as hydraulic head, pore water velocity or travel time (Bakr & Butler, 
2004), as this requires solutions of the inverse flow problem (e.g. McLaughlin & 
Townley, 1996). As an alternative approach, Kunstmann & Kinzelbach (2000) used a 
first-order second moment method to compute well capture zones and their associated 
uncertainty on the basis of an Eulerian framework. Stauffer et al. (2002) subsequently 
used a first-order approximation to investigate uncertainty in two-dimensional, steady-
state well catchment boundaries in random transmissivity fields. They locally scaled 
the stationary covariance derived by Rubin (1990) to account for nonstationary 
velocity covariances that result from pumping. More recently, Lu & Zhang (2003) 
presented a moment equation approach to derive time-dependent mean capture zones 
and their associated uncertainties. 
 Here we use an alternative, first-order approximated, numerical approach for 
nonstationary stochastic analysis of well capture zones, which is based on a Taylor’s 
series approximation of the discrete system of equations and is often termed the vector 
space-state/adjoint state approach (Zhang, 2002). Our focus here is on the nonstationarity 
due to a pumping well. We start from the work of Bakr & Butler (2005), where the 
original partial differential equation is first discretized on a specified grid using finite 
elements and the resulting system of equations, the so-called space-time equation, is 
used to derive statistical moments of the flow and mass transport quantities. As will be 
shown later, the main task of this approach is to determine flow and transport 
sensitivity coefficients. 
 
 
STOCHASTIC WELL CATCHMENT DETERMINATION USING  
FIRST-ORDER TAYLOR’S SERIES APPROXIMATION 
 
Forward modelling 
 
A forward operator, which takes the form of a partial differential equation, is used to 
predict the response of groundwater systems to initial and boundary conditions and 
hydraulic parameters. Here, the flow equation and Darcy’s law are solved numerically 
using the Galerkin (central) finite element method. This leads to a system of linear 
equations that can be stated as: 

g(s,ρ) = 0  (1) 
where s is a vector of nodal values of state variables (i.e. head and pore water 
velocity), and ρ is a vector of nodal natural log transmissivity values. Throughout this 
paper we use bold small letters to indicate vectors and bold capital letters to indicate 
matrices, and regular fonts to indicate scalars. We consider transmissivity as the only 
uncertain parameter. 
 Solving (1) provides an estimation of nodal values of state variables, in particular 
pore water velocity. These can then be used in a solution of the advective mass 
transport problem by particle tracking. For example, Euler’s method can be employed 
to delineate a well catchment starting from the generated stagnation point, such that: 
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Here, yi and yi+1 are the well catchment location at steps i and i + 1, respectively; is 
the tracking step in the x-direction; and  are the pore water velocities in the x- and 
y-direction at step i. We start tracking from a point which is located within a circle of 
small radius centred at the well’s stagnation point (xs,ys). Note that, we can similarly 
track a well catchment in the y-direction assuming a uniformly spaced grid with a 
step , such that: 
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In practise, applications (2) and (3) are used interchangeably to avoid very small 
values of or  causing singularities and truncation errors. i

xu i
yu

 
 
First-order Taylor’s series approximation 
 
The first-order Taylor’s series approximation (Dettinger & Wilson, 1981) is an 
approach used to propagate uncertainties in model parameters (independent variables) 
to its state (dependent) variables. Using (1), s can be stated as a function of ρ, s(ρ), 
such that its Taylor’s series expansion is given by: 
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where ρ  is a vector of the mean values of ρ. Taking the expected value of (4) and 
ignoring the second and higher-order terms, leads to the following expression: 

( )[ ] ( ) ( )ρsss =ρ=ρE ; [ ] 0=−ρ ρE  (5) 

which is a typical linearized solution. The covariance of s, Cs, is obtained by a similar 
procedure as: 
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No assumption have been made about the statistical properties of ρ. It is also clear 
from (6) that the main computational task in calculating the state variable covariance is 
the calculation of the sensitivity coefficients of s with respect to ρ. 
 
 
Stochastic capture zone design using first-order Taylor’s series approximation 
 
In this study we use back tracking from the well stagnation point to determine the 
effects of uncertainty on well catchment. The mean and variance of the catchment 
boundary location can be estimated by applying the Taylor’s series approximations, (5) 
and (6), to the forward model (equations (1) to (3)). In (5) and (6), the state variable s 
denotes well catchment location , . In this case the derivatives of  1+ix 1+iy 1+iy
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and are obtained by differentiating (2) and (3) with respect to ρ, such that: 1+ix
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and: 
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Derivatives of  are given by: i
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The derivative of  with respect to ρ can be obtained in a similar manner. i
yu

 

 
NUMERICAL EXAMPLE 
 
We will demonstrate our methodology for a synthetic problem. We consider a two-
dimensional rectangular domain in a saturated heterogeneous porous material. The 
flow domain has dimensions of 18 × 8 [L] with a pre-specified head boundary 
condition at east 10 [L] and west 11.0 [L], and no-flux boundary at the north and 
south. The domain is uniformly discretized using finite elements of size (Δxg = 0.2 [L], 
Δyg = 0.2 [L]). Effective porosity is assumed to be constant and equal to 0.25 [L0]. The 
natural logarithm of the local transmissivity is characterized by its mean, (ρ ) = 0.0 
(i.e. the geometric mean of the transmissivity is 1.0 [L2 T-1]), variance (σ2) = 0.1, 
correlation length (λ) = 1.0 [L], and an exponential covariance (Cρ). A pumping well is 
located at (xw = 9 [L], yw = 4 [L]) with a pumping rate of Q = 5.0 [L3 T-1]. Figure 1 
depicts the problem set-up.  
 The well catchment is obtained by: (a) tracking in the y-direction to estimate the 
associated catchment variable (xi) from the stagnation point (xs, ys) to the well location 
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Fig. 1 Problem setup. 



State-space first-order estimate of well catchment uncertainty 
 
 

193

xw, and then (b) tracking in the x-direction until the boundary is reached. Such a 
procedure reduces the effect of singularities and/or high truncation errors due to small 
values of  in the vicinity of the well. A comparison between the Monte Carlo (MC) 
and the State-Space First-Order (SSFO) methods to estimate variance of the well 
catchment in the x- and y-direction shows excellent results. Figure 2 shows the 
variance of x (left) and y (right) in the y- and x-direction, respectively, as computed by 
the MC and the SSFO methods. Here, we use 500 MC realizations to obtain the well 
catchment statistics. 
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Fig. 2 Variance of x (left) and y (right) in y- and x-direction, respectively. 

 
 
 The SSFO method can then be used to estimate the 95% confidence interval of the 
well catchment. Figure 3 provides a comparison with the MC method and shows 
excellent agreement between the two solutions. The curves in Fig. 3 were obtained on 
the assumption that the well catchment is normally distributed and the confidence 
interval is obtained by adding and subtracting 1.96σy (or σx) to the mean well 
catchment. 
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Fig. 3 The 95% confidence interval of the well catchment. 

 



M. I. Bakr et al. 
 
 

194

 A final point to mention here is the efficiency of the SSFO method as compared to 
the MC analysis. For the example solved here, the MC analysis required 500 calls to 
the iterative solver to obtain the head fields, 1000 calls to the iterative solver to obtain 
the pore water velocities in x- and y-direction and 500 calls to the tracking routine. 
Whereas, the SSFO analysis required one forward run that requires one call to the 
iterative solver for the flow problem and two calls for the solving Darcy’s law. It also 
required 2 × 153 calls to the iterative solver to obtain the sensitivity coefficients of the 
pore water velocities at 153 nodes with respect to ρ, and just one call to the tracking 
routine. So, in general, the SSFO method is less CPU demanding than the MC method. 
 
 
CONCLUSIONS 
 
In this study, the State-Space First-Order (SSFO) method to estimate a well 
catchment confidence interval is presented and its potential demonstrated via a 
synthetic example. The main computational demands for the method are in 
estimating the sensitivity coefficients of the well catchment with respect to the 
uncertain parameter (i.e. the transmissivity, ρ, in this study). These coefficients, in 
turn, require the sensitivities of head and pore water velocity with respect ρ to be 
determined. The method adopts a discrete approach where the governing differential 
equations are first discretized and then used to estimate sensitivity coefficients by 
means of the adjoint method. To overcome difficulties related to the singularity at the 
well stagnation point, we perturb the location of the well stagnation point 
perpendicular to the natural flow direction (x-direction in this study). Also, to 
overcome truncation errors due to small pore water velocity in the x-direction close 
to the well, we perform tracking along different directions, depending on the current 
position along the mean catchment within the flow field. 
 A comparison between the results of the SSFO and the MC methods showed that 
the two methods produce comparable results either for the simulated mean, variance, 
or confidence interval of the well catchment. The SSFO method is therefore 
proposed as an attractive alternative for stochastic well catchment analysis, as it 
requires less CPU time than the MC method (in this case 16 hours and 26 hours 
respectively, representing a 40% reduction). Although the example presented here is 
for an unconditional case, it is expected that CPU time savings for conditional cases 
will be much higher. 
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