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Abstract For a synthetic case we computed three types of individual 
prediction intervals for the location of the aquifer entry point of a particle that 
moves through a heterogeneous aquifer and ends up in a pumping well.  
(a) The nonlinear regression-based interval (Cooley, 2004) was found to be 
nearly accurate and required a few hundred model calls to be computed.  
(b) The linearized regression-based interval (Cooley, 2004) required just over 
a hundred model calls and also appeared to be nearly correct. (c) The calibration-
constrained Monte Carlo interval (Doherty, 2003) was found to be narrower 
than the regression-based intervals but required about half a million model 
calls. It is unclear whether or not this type of prediction interval is accurate. 
Keywords accuracy; computational requirements; Monte Carlo method; prediction interval; 
predictive uncertainty; regression based method; wellhead protection zone 

 
 
INTRODUCTION 
 
We study some stochastic and regression based methods that quantify the predictive 
uncertainty related to incomplete representation of spatial and temporal variations in 
hydrological and hydrogeological variables, and parameter uncertainty. A synthetic 
model case is used to compare the particle path uncertainty quantified by the various 
methods and to compare the computational requirements of the methods. In our example 
the hydraulic conductivity of the aquifer is a correlated Gaussian field which is 
described by m-vector β, where m is the number of grid elements of the numerical 
model, and the hydraulic conductivity is assumed to be constant within each element. 
In the groundwater model used for prediction and for quantification of predictive 
uncertainty β is substituted by a parameter vector, θ, of dimension p << m, i.e. β is 
substituted by γθ where γ is an pm ×  interpolation or averaging matrix. This model 
simplification increases the uncertainty of model prediction because the simplified 
model neglects part of the actual hydrogeological heterogeneity. In our example we 
define a large number of base parameters as hydraulic conductivities at pilot points, 
which is reduced to a small number of super parameters, θ, that are to be estimated. Using 
this parameterization method was found, in this case, to produce much less prediction 
uncertainty than if using zonation, and with the regression-based methods of Cooley 
(2004) it forms an exact approach for quantifying uncertainty of model predictions. 
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METHODS USED TO QUANTIFY PREDICTIVE UNCERTAINTY  
 
Regression based methods 
 
We us the regression based methods described in the recent works of Christensen & 
Cooley (2003, 2004), Cooley (2004). Very briefly described, the methodology is that 
the p vector of model parameters, θ is estimated by nonlinear regression, i.e. by 
minimizing the objective function: 

[ ] [ )()()( γθfYωγθfYθ −−= TS  (1) 

where Y = f(β) + ε is the n-vector of observations, ε is the random independent 
observation error with variance , f(γθ) is the n-vector of values simulated using γθ 
instead of β, ω is the  weight matrix, and T indicates transpose. The weight matrix 
ω used in the following is an estimate of , where Ω  is the second moment matrix 
of the true model errors (Gauss-Markov estimation).  
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 Cooley (2004) has shown that the limits of an individual prediction interval for a 
variable Yp = g(β) + εg can be computed as the extreme values:  
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where  is the regression estimate obtained by minimizing (1), tα/2(n – p) is the  
(1 – α/2) × 100 percentile of the t distribution with n – p degrees of freedom, cp is a 
correction factor given by Christensen & Cooley (2004, eqn 55), 

θ̂
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estimate of the prediction error, and  is the variance of the true model error of the 
prediction. Cooley (2004) has shown that for nonlinear problems θ and υ can be 
computed by solving equation (2) using the procedure given by Vecchia & Cooley 
(1987). It is noticed that computing each of the extreme values in (2a) corresponds to 
solving a nonlinear regression problem. 
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 If  are linearized then solving (2) reduces to Cooley (2004): ( ) ( )γθγθf g and 
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which has the form of a standard linear prediction interval. In equation (3) [ ]jif θ∂∂=X  

and [ ]jg θ∂∂=Z . 
 
 
Monte Carlo methods 
 
The stochastic method we use is the calibration-constrained Monte Carlo method 
described by Doherty (2003). Each of the Monte Carlo runs includes the following 
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steps: 
1. Generate a stochastic hydraulic conductivity field. 
2. Estimate a field of factors that when multiplied (“warped”) with the field 

generated in step 1 produces a modified hydraulic conductivity field that ensures 
that [ ] [ ] 2)()()( εσ=−−=Φ nT

m γθfYγθfYθ , where θ  is a p-vector of pilot point 
parameters from which the factor field is spatially interpolated, and  is the 
interpolation matrix. 

γ

3. Use the field estimated in step 2 to simulate the prediction Yp. 
 Steps 1 to 3 are repeated a large number of times to estimate the cumulative 
probability distribution for the prediction, Yp. The lower limit of the 95% prediction 
interval corresponds to the prediction at the 2.5% level of cumulative probability, and 
the upper limit corresponds to the prediction at the 97.5% level of cumulative 
probability.  
 To ensure that  the dimension p of θ  is larger than the dimension n 
of Y. To ensure that the estimation procedure used in step 2 converges in as few model 
runs as possible, and to ensure minimal deviation between the hydraulic conductivity 
fields computed in step 1 and step 2 of the procedure, we use the mathematical 
Tichonov regularization technique described by Doherty (2003, 2004) which imposes 
“maximum homogeneity” on the parameters, θ . 

2)( εσ=Φ nm θ

 
 
 
THE EXAMPLE 
 
The dimensions of the two-dimensional flow domain (Fig. 1) are 13.5 by 12, divided 
into uniform structural elements of size 0.2 × 0.2, except for the left-most column of 
elements which have width 0.1, and the top row and bottom row of elements which 
have height 0.1. The transmissivity is constant within each structural element. There is 
a pumping well in the centre of the domain where groundwater is abstracted at a rate  
of 1. Boundary conditions include no flow across the top and bottom boundaries, a 
constant head along the right boundary, and a constant flux across the left boundary 
(simulated as recharge equal to 6.2152 over the left-most column of cells). The 
observations, Y, consist of simulated hydraulic head at 30 locations (Fig. 1) perturbed 
by independent random error with a small variance, . 01.02 =σε

 The vector ( )βV0β 2,N~ βσ  consists of spatially varying log10-transmissivity with 

exponential covariance, , having a correlation scale of 3.0 in the x-direction and 

0.3 in the y-direction, and . The log10-transmissivity within the element 
with the pumping well is known to be 0.8686. We generated 2000 independent 
realizations of β. These realizations were used to compute  and 

βV2
βσ

7544.02 =σβ

Ω pω  (Christensen & 
Cooley, 2003) to be used with the regression-based methods, and to generate the 
cumulative probability distribution of the prediction, Yp = g(β), where g(β) in this 
example is the entry point of a particle that ends up in the pumping well (Fig. 1). 
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Fig. 1 Model domain, boundary conditions, location of pumping well and head 
observations, and example of particle path and entry point. 

 
Table 1 Y coordinate (Ytrue) and level of cumulative probability of the particle entry point location for 
the five selected hydraulic conductivity field realizations. 

Realization # 1556 1430 1558 479 502 
Ytrue of entry point 4.061 5.215 6.010 6.829 7.906 
Level of cum. prob. 5% 25% 50% 75% 95% 

 
The entry point is calculated by backward particle tracking using MODFLOW-

2000 (Harbaugh et al., 2000) with the ADV2 package (Anderman & Hill, 2001). On 
the basis of the cumulative probability distribution of Yp we chose five different 
realizations of β (Table 1) for which we computed and compared 95% prediction 
intervals for the location of the entry point using the various methods. 
 For the regression-based methods we parameterized the model by defining 182 
pilot points uniformly distributed over the model domain. The log10-transmissivity 
within the elements of the pilot points we call the base parameters. Because the 
number of base parameters is greater than the number of observations, the number of 
parameters that are actually estimated by nonlinear regression is reduced by using a 
singular value decomposition (SVD) technique similar to that of the SVD-Assist 
technique implemented in PEST and described by Doherty (2004). We call this 
reduced set of parameters the super parameters. For the regression based calculations 
of prediction intervals we used only nine super parameters. The correction factor,  
cp = 0.812, to be used in (2b) was computed using the Corfac-2k program of 
Christensen & Cooley (2004). The parameter estimation and the calculation of 
prediction interval limits were carried out using PEST (Doherty, 2004) with 
MODFLOW-2000 (Harbaugh et al., 2000) as the forward-problem simulator.  
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 It was not mentioned in the conference proceedings version of this manuscript 
(Christensen et al., 2005) that when using super parameters to parameterize a ground-
water model then  is a function of the weight matrix . We therefore used the 
following procedure to estimate : (i) Begin with using 

Ω ω
1−≈ Ωω Iω =  in equation (1), 

carry out SVD of (1) to define super parameters, and compute the corresponding 
second moment matrix  by the Monte Carlo method. (ii) Then set , repeat 
the SVD of (1) to define the final super parameters, and repeat the Monte Carlo 
analysis to compute the corresponding second moment matrix . In the example the 
result is that . Step (ii) was not carried through in Christensen et al. 
(2005), and the results presented here therefore differ slightly from those of 
Christensen et al. (2005). 

0Ω 1
0
−= Ωω

Ω
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0
−− ≈= ΩΩω

 For the calibration-constrained Monte Carlo method we parameterized the model 
by defining 195 pilot points uniformly distributed over the model domain that locate 
the base parameters from which the hydraulic conductivity multiplier field was 
interpolated. In estimating the base parameters we used Tichonov regularization to 
achieve maximum homogeneity of the parameter values. In estimation, the 195 base 
parameters were reduced to 50 super parameters by using PEST with its SVD-Assist 
functionality (Doherty, 2004). 
 When computing the regression based nonlinear prediction intervals we thus had 
to estimate nine super parameters three times, first to find the set of parameters that 
minimize equation (1), and then to estimate the set of parameters that gives each of the 
limits defined by equation (2). When computing the regression based linearized 
prediction intervals only the minimization of (1) had to be carried out. For the 
calibration-constrained Monte Carlo method we had to estimate 50 super parameters in 
step 2 of each of the 1000 Monte Carlo runs that were found necessary to obtain 
stabilized results. 
 
 
RESULTS 
 
Table 2 shows the calculated nonlinear 95% prediction intervals for the five chosen 
hydraulic conductivity realizations. The width of the prediction interval varies between 
4.059 and 7.365, and in all five cases the true entry point location (Ytrue in Table 1) 
falls inside the 95% prediction interval. The total number of model calls necessary to 
minimize equation (1) and compute the two limits defined by equation (2) is seen to 
vary between 222 and 469.  
 
 
 
Table 2 The 95% prediction interval limits and total number of model calls for nonlinear intervals 
computed by the regression based method. 

Realization # 1556 1430 1558 479 502 
Upper limit 8.014 7.823 8.111 8.415 8.355 
Lower limit 3.932 0.458 3.966 4.327 4.296 
Width of interval 4.082 7.365 4.145 4.088 4.059 
Number of model calls 222 469 267 224 244 
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 Nonlinear intervals were actually calculated for 1998 realizations of β. In 1863 
cases (a frequency of 93.2%) Ytrue is inside the 95% prediction interval, in 79 cases 
(4.0%) Ytrue is above the interval, and in 56 cases (2.8%) it is below. The nonlinear 
prediction intervals thus appear to be nearly accurate. 
 Table 3 shows the calculated linearized 95% prediction intervals. It is noticed that 
the linearized intervals are sometimes wider, and sometimes narrower than the corres-
ponding nonlinear intervals in Table 2. It is also noticed that the total number of model 
calls necessary to compute the linearized intervals as expected is about a third of the 
model calls necessary to compute the nonlinear intervals, and that in all five cases the 
true value of the entry point location falls inside the linearized interval. The linearized 
intervals were computed for 1998 realizations of β, and these results showed that in 
1868 cases (a frequency of 93.4%) Ytrue is inside the 95% prediction interval. This 
indicates that the linearized intervals are also nearly accurate and tend to be slightly 
wider than the corresponding nonlinear intervals. 
 
Table 3 The 95% prediction interval limits and total number of model calls for linearized intervals 
computed by the regression based method. 

Realization # 1556 1430 1558 479 502 
Upper limit 8.012 7.857 8.113 8.420 9.126 
Lower limit 3.939 3.646 3.977 4.322 3.524 
Width of interval 4.073 4.211 4.135 4.098 5.602 
Number of model calls 83 104 104 83 104 

 
Table 4 The 95% prediction interval limits and total number of model calls for intervals computed by 
the calibration constrained Monte Carlo method (warping 1000 fields using Tichonov regularization). 

Realization # 1556 1430 1558 479 502 
Upper limit 7.153 8.835 7.364 9.218 8.156 
Lower limit 4.135 4.618 4.976 5.708 5.265 
Width of interval 3.018 4.217 2.388 3.510 2.891 
Number of model calls 418 187 485 411 (not avail.) 585 161 445 226 

 
 Table 4 shows the 95% prediction intervals computed by the calibration-
constrained Monte Carlo method. For all five realizations the width of the Monte Carlo 
computed interval is narrower than or similar to both types of regression based 
intervals. The width of the intervals in Table 4 is, for example, between 57% and 86% 
of the width of the corresponding intervals in Table 2. For realization 1556 the true 
value of the entry point location falls below the interval. That the true entry point 
location falls outside the 95% prediction interval in one out of five cases could indicate 
that the intervals are inaccurate (too narrow). However, with only five cases there is no 
statistical significance for drawing such a conclusion, and it remains unclear whether 
or not the Monte Carlo based prediction intervals are accurate in this example. The 
total number of model calls necessary to compute prediction intervals by the Monte 
Carlo method is of the order of 1000 times greater than the number of model calls used 
for the regression-based intervals. (For realization 1556 we also computed the 
prediction interval without using PEST’s SVD-Assist functionality. In this case the 
required number of model calls tripled.)  
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CONCLUSIONS 
 
For a synthetic case we computed three types of individual prediction intervals for the 
location of the aquifer entry point of a particle that moves through a heterogeneous 
aquifer and ends up in a pumping well.  

(a) The nonlinear regression-based interval (Cooley, 2004) was found to be nearly 
accurate and required a few hundred model calls to be computed.  

(b) The linearized regression-based interval (Cooley, 2004) required just over a 
hundred model calls and also appeared to be nearly correct.  

(c) The calibration-constrained Monte Carlo interval (Doherty, 2003) was found to be 
narrower than the regression-based intervals but required about half a million 
model calls. It is unclear whether or not the Monte Carlo based prediction intervals 
are accurate. 
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