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Abstract Upscaling transmissivity near the wellbore is expected to be useful 
for well performance prediction. This article ascertains the requirement of 
upscaling and presents a scheme to upscale the transmissivity in the near-well 
region for 2-D steady flow, which extends the approach of Gómez-Hernández 
& Journel (1994) to the near-well region with radial flow. Several synthetic 
fields with different stochastic models are chosen to check the efficiency of 
this scheme. Both flow and transport simulations are carried out in finite 
confined heterogeneous aquifers to evaluate the results. It is shown that the 
proposed method improves the ability in predicting well discharge or recharge 
and solute transport at the coarse scale. 
Keywords radial flow; stochastic model; transmissivity; upscaling 
 
 
 

INTRODUCTION 
 
Stochastic modelling of reservoir parameters with the aid of geostatistical techniques 
can provide effective high-resolution images of a reservoir at the measurement scale. 
Limitation in computing resources forces these models to be upscaled at the modelling 
scale. Several upscaling approaches have been developed to coarsen detailed aquifer or 
reservoir models into those at an appropriate scale for numerical simulations (Wen & 
Gómez-Hernández, 1996b; Renard & de Marsily, 1997). Many of them are quite 
efficient in upscaling transmissivity under uniform flow conditions in porous media 
where local piezometric head or pressure values normally vary slowly. 
 In the immediate vicinity of a well, however, these existing upscaling approaches 
may not be applicable due to the fact that the flow pattern is no longer uniform but 
convergent around a pumping well or divergent near an injection well. The pressure 
gradient typically increases close to the well and becomes highly sensitive to the 
spatial variation of transmissivity (Desbarats, 1992) and especially to the difference 
between the global mean lnT and the value at the wellbore (Axness & Carrera, 1999). 
Moreover, the concentration distribution and the breakthrough curve of injected 
conservative tracers will differ from those of the uniform flow. An effective upscaling 
scheme should capture this character of the pressure gradient around the well and 
honour the statistical structure of lnT. Basically, two problems need to be addressed: 
(a) Can a coarse grid account for the flow geometry in the near-well region? and (b) Do 
block transmissivity values adequately honour heterogeneities of the aquifer or 
reservoir? This article presents a scheme to upscale the transmissivity in the near-well 
region for two-dimensional (2-D) steady flow.  
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METHOD 
 
An upscaling procedure typically consists of three steps: (a) using geostatistical 
techniques, a series of fine, detailed equiprobable models of transmissivity are 
generated, each representative of the geology and hydrology of the area; (b) a coarse 
grid is designed to capture the main characteristics of flow and transport at the larger 
scale; and (c) an equivalent value, either scalar or vectorial, calculated from the fine 
model of scalar transmissivity is assigned to the coarse model. 

The Thiem solution to the 2-D steady flow in a homogeneous porous medium with 
prescribed heads at the well radius and at an exterior circular boundary can be written 
as:  

( ) ln( )
ln( / )

e w
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h hh r h r
r r
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= +  (1) 

where r represents the normalized radius r = r′/rw; rw is the wellbore radius; r′ is the 
radius from the well axis; and he and hw are the heads at the outer and inner radii, 
respectively. Although this solution is only applicable for homogeneous media, it may 
be shown that gridding with respect to ln(r) other than r minimizes the error in the 
hydraulic head (Axness et al., 2004). The coarse grid in terms of log-scale, therefore, 
will have more advantage than the normal scale. The former is expected to be able to 
capture the main features of gradient variations better than the latter, even for highly 
heterogeneous media.  

We extend the concept of skin (Gómez-Hernández & Journel, 1994) to the 
computation of equivalent transmissivity for a coarse grid. Two sets of boundary 
conditions are considered for each coarse block: one is in the x direction and the other 
in the y direction. We obtain the corresponding Txx and Tyy by solving the local flow 
problems at the fine scale. One of the crucial problems is the configuration of 
boundary conditions for each coarse rectangular block. We approximate the head value 
for each side by calculating it at the middle point of each edge by the Thiem solution. 

The procedure for calculating the equivalent transmissivity is as follows: (1) define 
the smallest rectangular block that includes the non-rectangular target block; (2) solve 
the flow problem with boundary conditions described as above; (3) evaluate the 
average flow rate QV and the average head gradient ΔhV over the non-rectangular target 
block both in x and y directions; and (4) compute the equivalent transmissivity by: 

, ,V xx V xx V xxT Q h= − Δ ,  (2) 

, ,V yy V yy V yyT Q h= − Δ ,  (3) 
 
 
NUMERICAL SIMULATION 
 
We chose two types of parameters for the assessment of upscaled results: one is the 
water injection (or, similarly, the yield for a pumping well) in to the wellbore, and the 
other is the travel time of conservative tracers. The former can be achieved by 
calculating the flow from the wellbore after solving the flow equations. The latter can 
be accomplished by the random walk particle tracking method. 
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The flow problem is solved by tailoring the five-point block-centred finite-
difference simulator to the radial flow case. The transmissivity at the interface between 
cells are computed using harmonic averages of the adjacent blocks. We model the 
radial flow to a well by specifying the fixed heads at the wellbore and at the exterior 
circular boundary, i.e. hw = 10 and he = 0 (unit-free), respectively. The transport 
equation solver adopts a particle tracking scheme (Wen & Gómez-Hernández, 1996a). 
Two-thousand particles released from the wellbore are followed until they arrive at the 
control circle which is set 100 units away from the wellbore.  
 
 
RESULTS 
 
Four types of technique are assessed in this section: (a) the proposed scheme as 
previously stated, (b) traditional geometric average from the fine scale in the frame-
work of a non-uniform grid (coined as GM), (c) non-upscaled method (noted as NP), 
and (d) the geometric average from the fine scale in the framework of uniform grid 
(referred to as UG). GM assigns the upscaled element transmissivity to be the geometric 
mean of support cells within the coarse elements. This is the simplest and traditional 
method for upscaling uniform flow. We present the results here with two aims: one is 
to check its efficiency under the radial flow conditions, and the other is to compare its 
results with the proposed approach. NP simply assigns the transmissivity in the up-
scaled element to be the point value at the upscaled element centroid or to be the 
transmissivity of the support scale element closest to the centroid when the field is 
generated at a fine support scale. This is the usual case when detailed reservoir models 
are not available, for example, in the region less than several correlation lengths away 
from the wellbore. The last technique, UG, is done in the same way as the second but 
only distinctly with the grid intervals uniform. 
 
 
Multi-Gaussian transmissivity fields with isotropic structures 
 
One hundred log-transmissivity fields are generated by GCOSIM3D (Gómez-
Hernández & Journel, 1993), each of them with correlation lengths equal to 10 in both 
the x and y directions, i.e. λx = λy = 10, with variances set as σ2

lnT
 = 2. The transmiss-

ivity fields are scalar, that is, Txx = Tyy, and E[lnT] = 0. The flow rates of the wellbore 
are computed at the fine scale and named as reference values. Then the fine scale fields 
with 801 × 801 grids are upscaled to those with 12 × 10 coarse grids in the same way 
as described above. The fluxes over the wellbore are computed on the coarse scale for 
four different upscaling approaches, named as proposals GM, NP and UG, respectively. 

Figure 1 shows the relationship between the wellbore reference fluxes and those 
determined using the four different approaches. Figure 1(a) displays one hundred 
wellbore discharges by the proposed upscaling approach compared to those of the 
reference fine scale. The average flux of one hundred realizations is 17.537 for the 
reference fields and 17.012 for the proposed method with a relative error of only 3%. It 
shows that the upscaled values are reasonable approximates. Note, moreover, that the x 
and y mean values are close to each other showing that this method is unbiased, that is, 
the upscaled Q tends to be close to the reference Q in the mean. Figure 1(b) shows the 
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Fig. 1 Wellbore fluxes; correlations between the fine scale and the coarse scale of 
multi-Gaussian transmissivity fields with isotropic structures: (a) Q reference vs 
proposal, (b) Q reference vs GM, (c) Q reference vs NP, and (d) Q reference vs UG.  

 
 

performance of the traditional geometric mean method. The correlation and rank 
correlation coefficient show a slight decrease relative to (a), but are still more than 
99%. It seems that the geometric mean method is quite efficient and robust in 
upscaling radial flow in the near-well region for the scalar transmissivity fields with 
isotropic structures. Figure 1(c) plots the results of the NP method. The results are 
more variable with a correlation coefficient of only 73%. Obviously the reproduction 
ability is worse than the GM method. Figure 1(d) is the result of the UG method, i.e. 
that with a uniform interval grid. The wellbore fluxes calculated from the coarse grid 
severely deviate from those of the fine grid, and thus the method is heavily biased.  
 
 
Non-Gaussian transmissivity fields with anisotropic structures 
 
One hundred log-transmissivity fields are generated by ISIM3D (Gómez-Hernández & 
Srivastava, 1990), each with a correlation length equal to 10 in the x direction and 5 in 
the y direction, i.e. λx = 10 and λy = 5. The variance is set as σ2

lnTxx = 2. The 
transmissivity fields are constant vectorial, that is, Txx = Tyy/2, and E[lnT] = 0. The 
fluxes over the wellbore are computed for the fine scale fields and for the four different 
upscaled fields in the same manner as in the first scenario. 
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 Fig. 2 Comparison of breakthrough curve reproduction of non-Gaussian transmissivity

fields with anisotropic structures at four sample percentile points: (A) the left side 
cases represent the points at 5%, 25%, 75% and 95% of the proposed method, and 
(B) right side cases represent the points at 5%, 25%, 75% and 95% of the GM method.
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Due to the difficulty of comparing the whole breakthrough curve for all 
realizations, we only sample four typical points of the breakthrough curve, e.g. 5%, 
25%, 75% and 95%, which account for the early, middle and late arrival time. Figure 2 
compares the breakthrough curve matching with reference fields between the proposed 
method and the GM method. As for the average breakthrough error, the proposed 
approach has a quite noticeable gain over the GM method. All four sample points of 
the former have values closer to the reference ones than those of the latter. The error 
reduction is 47% for the first point (5%), 63.3% for the second (25%), 37.3% for the 
third (75%), and 83.4% for the fourth (95%), respectively. The improvement in error 
using the proposed method is more apparent when anisotropic non-Gaussian models 
are used than the improvement when isotropic multi-Gaussian models are used.  

 
  
CONCLUSIONS 
 
Our comparison shows that upscaling may retain the main features of flow and 
transport in heterogeneous media. The proposed method improves the ability to 
predicting well discharge and solute transport error when a coarse grid is used for 
simulation. In other words, the proposed upscaling approach is efficient and robust 
both for flow and for transport simulations. Geometric mean upscaling is an alternative 
approach to upscaling in the near-well region, especially when the log-transmissivity is 
a multi-Gaussian field with an isotropic structure. A uniform grid fails to capture the 
flow and transport features in the near-well region. 
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