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Abstract Transmissivity of aquifers is spatially variable in the plane. 
Hoeksema & Kitanidis (1985) have analysed field data of tens of aquifers and 
found that the log-transmissivity, regarded as a normal stationary random 
function, is characterized by integral scales of the order of kilometres to tens 
of kilometres. We examine the impact of transmissivity heterogeneity upon 
steady flow toward a pumping well, for realistic values of the ratio between 
the integral scale and the well radius of 2000 or larger. Our main finding is 
that in the zone of influence of the well, of radius up to 2000 well radii, the 
aquifer practically behaves like a homogeneous one, with the constant 
transmissivity pertaining to the location of the well. Flow can be modelled, 
therefore, as one-dimensional (in the radial coordinate) and randomness is 
parametric. Thus uncertainty can be practically eliminated by conditioning the 
head on transmissivity measured at the well. We conclude that flow and 
transport in the zone adjacent to the well are impacted by the three-
dimensional local variability of the hydraulic conductivity, but not by the 
large-scale transmissivity heterogeneity. 
Keywords groundwater flow; groundwater hydrology; random media; scaling; steady-state; 
stochastic processes; transmissivity; wells 

 
 
INTRODUCTION AND BACKGROUND 
 
Natural formations (aquifers, reservoirs) display, as a rule, spatial variability of the 
hydraulic conductivity K, at various scales. By using the terminology of Dagan (1989), 
K(x) at the local scale is defined as pertaining to a volume of the order of decimetres 
that surrounds the point of coordinate x. It can be determined by laboratory measure-
ments of samples or cores, or indirectly by profiling of boreholes using geophysical 
methods or flow meters. At this scale, K variation is of three-dimensional (3-D) nature 
and it is customary to model lnK as a normal random space function. The log-
conductivity is generally of an anisotropic structure: the vertical integral scale Iv, of 
order O (10-1 m) is smaller than the horizontal one Ih = O (100 m) (Rubin, 2003, Table 
2.1). Since generally Iv << D (the formation thickness), Iv can be determined from the 
histogram of measured K along a borehole that is fully penetrating the aquifer. The 
determination of Ih is more difficult, as it implies cross-correlation of different 
boreholes. 
 In contrast, at the regional scale, flow is modelled as 2-D due to the large ratio 
between the horizontal extent (tens of kilometres) and D. Then, the pertinent property 
is the transmissivity T. In numerical codes, block transmissivity can be viewed as the 
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result of upscaling of the local K. Since natural flow at this scale generally varies very 
slowly in space and since numerical blocks are large compared to Ih, the transmissivity 
can be approximated by KefD, where Kef is the effective conductivity for mean uniform 
flow. However, transmissivity is generally determined indirectly either by solving the 
inverse problem or by pumping tests. In the latter case, analysis of measurements of 
head at a distance r >> Ih from the well and for a prolonged period may provide the 
value of KefD, and we assume this is the case. 
 Hoeksema & Kitanidis (1985) analysed pumping tests in tens of aquifers, each of 
which contained multiple wells. They found that T(x) is spatially variable and Y = lnT 
can be modelled as normal. The range of values for the integral scale I identified by 
Hoeksema & Kitanidis (1985) are as follows: 1.4–45 km for aquifers made of con-
solidated materials and 2.6–39 km for unconsolidated materials. Hence the planar log-
transmissivity integral scales are larger by at least three orders of magnitude than the 
local ones. Due to this wide separation, one may regard the heterogeneous aquifer as a 
superposition of two random structures: the quasi-stationary local lnK (3-D) and the 
stationary log-transmissivity Y (2-D), where the latter represents a slowly varying trend 
of the first one.  
 The topic we are going to address here is the following: what is the impact of 
transmissivity spatial variation, characterized by the scales identified by Hoeksema & 
Kitanidis (1985), upon the head distribution around a pumping well? This problem has 
been investigated recently by Sánchez-Vila (1997), Sánchez-Vila et al. (1999), Riva et 
al. (2001), Neuman et al. (2004), and Copty & Findikakis (2004). The main difference 
between the present study and the previous ones is that we focus the analysis on 
formations characterized by the small, but realistic, values of the ratio between the well 
radius rw and I, namely rw I -1 < 5 × 10-4. We shall show that this restriction has a 
profound influence on the flow in the zone of influence of the well (say r rw

-1 > 2000): 
the aquifer practically behaves as a homogeneous one of transmissivity equal to its 
local value. Hence, modelling Y as a random 2-D space function has limited impact 
upon the zone of interest surrounding the well. 
 
 
 
BASIC ASSUMPTIONS AND METHODOLOGY 
 
We consider steady flow in a confined aquifer of unbounded extent. We assume that  
Y = lnT is stationary of mean GTY ln= , variance  and two point covariance 

. Here ρ is the autocorrelation, characterized by the 

integral scale . A well of radius rw is pumping steadily, with given 

discharge Q and head Hw. The head H(r,θ), with x = r cosθ, y = r sinθ, is random due to 
the randomness of Y.  
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 Following Matheron (1967) we adopt the definition of the equivalent transmissivity 
T = Q ln(R rw

-1) [2π (HR – Hw)]-1 of a domain surrounding the well rw < r < R with 
boundary conditions of constant heads H(rw) = Hw, H(R) = HR. Thus, Teq is the 
transmissivity of a fictitious homogeneous aquifer that conveys the same discharge Q 
as the actual one, for the given head drop. 
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 We slightly generalize the definition for any r and for an unbounded aquifer as: 
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1 d,2 rHrH  is the average head over a circle surrounding the 

well, while for convenience Hw = 0. We are going to examine the impact of hetero-
geneity with the aid of Teq, which is a parameter accessible by measurements of H 
(with HH ≅ ). 
 The equivalent transmissivity Teq is random since H is such. From considerations 
of dimensionality the moments of TeqTG

-1 are functions of . To 

determine 
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eqT  and in an approximate manner, we adopt the common first-order 

approximation in . First, we expand the head in a perturbation series 
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-1) +…] and subsequently the expected value and the variance 
at leading order are found as: 
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with A defined in (1). 
 The general solution of ( )11222 , −−−− =σσ IrrrfT wwYGTeq

 is discussed in the next section. 
It is a simple matter, however, to derive it at the limit r I -1→ 0, i.e. for a homogeneous 
aquifer of random T surrounding the well. This is a case of parametric uncertainty: in 
each realization the exact 1-D solution is given by H=A T(0)-1. It follows that 
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 Our aim is to derive for small, but different from zero, rw I -1 in order to assess 
the impact of the spatial variability of T upon Teq. 

2
eqTσ

 
 
COMPUTATIONS, RESULTS AND DISCUSSION 
 
The starting point for determining Teq is the equation of well-flow: 

∇(T ∇H)=Q δ (r) (4) 

where δ (r) is the Dirac operator such that the well is replaced by a point-sink of 
strength Q at the origin r = 0. 
 With T = TG exp(Y′) = TG (1+Y′ +…), the expansion of equation (4) at zero and 
first-order in Y′, the log-transmissivity fluctuation, yields: 
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 The zero order solution is given by H0 = A TG
-1 which represents flow in a 

homogenous aquifer of transmissivity TG. The solution of the random H in equation 
(5) can be written in terms of the Green function G(r-r’) = (2π)-1ln|r-r’| as follows: 

( ) ( ) ( ) ( )∫ −∇•∇= ''''' 01 rrrrrr dGHYH  (6) 

We have simplified the expression of 2
Hσ , based on (6), and reduced it to the 

computation of three quadratures (the details will be given elsewhere). The final 
results for the function 2

0
11 −−− σ=σσ HAT HYGTeq

 are given in Fig. 1. This figure, which 
encapsulates our main results, depicts the dependence of the ratio between the 
standard deviation of the equivalent transmissivity for rw I -1 > 0 and the one 
corresponding to rwI -1 = 0, as function of r rw

-1. 
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Fig. 1 Transmissivity standard deviation in the well influence zone for a few values of 
rw I -1. 

 
 
 Generally speaking, the head variance 2

Hσ  drops from its value  for r I -1 = 

0 to zero for r I -1 >> 1. Indeed, as r I -1 increases, 

2
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2 HYσ

)(rH  averages the flow over an 
expanding area relative to the heterogeneity scale. Eventually ergodicity is attained, 
with 02 →Hσ  and Geqeq TTT == . However, for the aforementioned large field 
values of I, the latter limit is irrelevant since it is reached at a huge distance from the 
well, far beyond its radius of influence. 
 Figure 1 depicts the drop of  within the radius of influence of the well, 
for r rw

-1 < 2000 (e.g. for rw = 0.25 m, r = 500 m). It is seen that for the reasonable 
value of rw I -1 = 2 × 10-4 (i.e. I = 1.25 km)  stays very close to unity and 
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even more so for larger I. Even in the unrealistic case of rw I -1 = 5 × 10-4, the 
deviation is small. 
 We conclude that in the area surrounding the well and for typical values of the 
log-transmissivity integral scale the aquifer practically behaves as a homogeneous 
one of transmissivity T(0) and the flow can be regarded as one-dimensional (in terms 
of the radial coordinate r). The randomness of T is of a parametric nature and is 
manifest in the uncertainty of prediction of H and Teq, but not in spatial variability of 
the latter. 
 If the transmissivity is conditioned with the aid of that measured at the well, this 
large parametric uncertainty is eliminated and the flow becomes one-dimensional and 
deterministic (the topic of conditioning will be discussed elsewhere). Still, the local 
scale heterogeneity, of a three-dimensional nature, has a definite impact on flow and 
transport in the domain adjacent to the well. This effect is not captured by the 
transmissivity spatial variability (see Fiori et al. 1998; Indelman 2004; Lessoff & 
Indelman 2004). 
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