A synthetic study of the worth of transmissivity
and head data to delineate groundwater protection
zones in braided alluvial aquifers

J. KERROU¹, P. RENARD¹, I. LUNATI² &
H. J. W. M. HENDRICKS FRANSSEN³

¹Centre for Hydrogeology, University of Neuchâtel, Emile Argand 11, CH-2007 Neuchâtel, Switzerland
jaouher.kerrou@unine.ch
²Institute of Fluid Dynamics, Swiss Federal Institute of Technology (ETH), ETH-Zentrum, Sonnebergstrasse 3, CH-8092 Zürich, Switzerland
³Institute of Hydromechanics and Water Resources Management, Swiss Federal Institute of Technology (ETH), ETH-Hönggerberg, CH-8093 Zürich, Switzerland

Abstract Kriging, stochastic conditional simulations, and stochastic inversion are compared to characterize a synthetic hypothetical braided alluvial aquifer. The performance of the three techniques is compared in terms of reproduction of a 10-day capture zone of a pumping well. The results obtained compare fairly well with previous investigations dealing with the stochastic delineation of capture zones. However, the presence of a large number of deterministic channels in the reference transmissivity field reduces significantly the accuracy of the three techniques as compared to previous published results.

Keywords capture zones; inverse; kriging; stochastic simulations; uncertainty

INTRODUCTION

In Switzerland, alluvial aquifers constitute the most exploited freshwater resource. At the same time, these aquifers are extremely vulnerable because they are shallow, and located in zones that are either highly urbanized or intensively used for agriculture. Furthermore, the complexity of the sedimentary processes in such regions, located very close to the Alpine arc, creates a high degree of heterogeneity leading to a large uncertainty in solute transport predictions. Finally, because of the scarcity of arable land and the consequent economic importance of alluvial plains, the law imposes delineation of protection zones of smaller size compared to other European countries. Within this context, the present study aims at evaluating numerical techniques that can be used to characterize the aquifer in order to delineate capture zones and estimate the uncertainty of the prediction. Three approaches are considered: two direct approaches based only on transmissivity data (kriging and conditional simulations), and one inverse approach including head data. The advantage of including head data in the inverse approach has already been shown (Wen et al., 1996; Bakr & Butler, 2004; Stauffer et al., 2004). In this study, we investigate the efficiency of these techniques by considering a synthetic braided alluvial aquifer that includes some realistic deterministic structures (channels) and bimodal random fluctuations of the transmissivity field. In order to simulate the typical approach followed in practice, the study is divided in to two major steps: first a characterization step to reconstruct the transmissivity fields from punctual transmissivity and/or head values sampled on the
The worth of transmissivity and head data to delineate groundwater protection zones

Fig. 1 (a) The synthetic transmissivity field, (b) histogram of the log decimal of the transmissivities, (c) \(x\) and \(y\) directional variograms, (d) head fields and boundary conditions for the uniform flow situation, (e) 10-day capture zone under the radial flow conditions.

synthetic reality, then a forecasting step to predict the 10-day protection zone around a future pumping well. As in real cases, the flow conditions of the forecasting step are different (new pumping well) from the flow conditions of the characterization step.

THE VIRTUAL REALITY

The research is conducted on a synthetic and hypothetical reality (Fig. 1(a)–(c)). The medium consists of channels and lenses displaying internal heterogeneity. The reference transmissivity \(T\) field is built from an air photograph displaying braided channels in the Ohau River, New Zealand (Mosley, 1982). This image was digitized and used at its real scale so that the size of the channels and lenses is realistic. The image size is 1-km long and 400-m wide with a resolution of 1 m. Two multi-Gaussian unconditional simulations were generated to populate separately the channels and the lenses with \(T\) values. The first simulation describes the \(T\) distribution in the channels; it has an exponential variogram with a short correlation range (3 m). The second simulation describes the lenses. It has a nested variogram including one isotropic exponential model with a 3 m range, plus a cubic anisotropic model with a long range in the \(x\) direction (600 m) and a smaller one in the \(y\) direction (300 m). The overall integral scale has been estimated in the \(x\) and \(y\) direction \((i_x = 25.7 \text{ m}, i_y = 7.4 \text{ m})\) by numerically integrating the correlation function calculated directly on the reference \(T\) field.

On the reference transmissivity field, a uniform steady-state flow (Fig. 1(d)) is computed with the \textit{feflow} code by imposing two constant head values on the east and west boundaries, whereas the north and south limits are no-flow boundaries. This flow field is used to sample head data for the inverse approach in the characterization step.
Fig. 2 The characterization step for 250 T data: (a) histogram of the 250 T data, (b) experimental and model variograms of the Gaussian transform of the decimal log of the T data, (c) kriging, (d) one simulation conditioned only to the 250 T values, and (e) the same simulation conditioned to the 250 T and 1000 h measurements.

In the forecasting step, the flow field has the same boundary conditions plus an additional constant-rate pumping well located in the middle of the domain. The 10-day capture zone of this well is calculated by solving the Kolmogorov backward equation (Uffink, 1989). The mean life expectancy is calculated with the gwad finite element code (Cornaton, 2004). The 10-day capture zone is defined as the region where these values are lower than 10 days (Fig. 1(e)). The longitudinal and transversal dispersivities are very small (2 and 0.2 m), leading to a narrow dispersion of the life expectancy values around the mean.

SIMULATING THE CHARACTERIZATION AND FORECAST STEPS

To simulate the aquifer characterization, the reference transmissivity field is sampled at random locations within the cells of a regular grid. We obtain three data sets with 21, 250, and 1000 T measurements. The mean distance between the samples is, respectively, 89, 26, and 12 m. If we normalize these distances by the integral scale in the x direction, we obtain a mean dimensionless distance between the samples $d = 3.5$, 1, and 0.5, respectively. In other words, the three data sets represent measurements whose mean spacing is three times the integral scale in the x direction, on the order of the integral scale, and half of the integral scale, respectively. Note that the reference image is anisotropic and the integral scale in the y direction is much smaller, even smaller than the mean distance between the samples in the 1000 T measurements case. The same sampling method is applied for the piezometric heads. Sampling locations are the same locations as for the transmissivities.

Each transmissivity data set is intended to mimic a set of experimental data and it is analysed separately. The T values are transformed into a normal variable N via a
The worth of transmissivity and head data to delineate groundwater protection zones

Gaussian anamorphosis of the decimal log of T. An experimental variogram is calculated and a model fitted to this data. The variogram model is used for the three characterization techniques. As a first direct approach, kriging of the N values is used. This map is transformed back to get an estimation of the T field (Fig. 2(c)). As a second direct approach, 100 conditional stochastic simulations of N are generated and transformed back into T (Fig. 2(d)). As a third approach, the previous stochastic simulations are, in addition, conditioned by the head data (Fig. 2(e)) with the invertto code (Hendricks Franssen, 2001). In this case, for each ensemble of stochastic simulations corresponding to a given T data set, the conditioning on heads (h) is made successively for all the h data sets that contain the same number of head data as the T data, or more. At the end of the process, we have three kriged transmissivity fields, 300 simulations conditioned only on T, and 600 simulations conditioned on T and heads. For each of these transmissivity fields, the 10-day capture zone is calculated with the same approach that was used for the reference field.

RESULTS

The first striking result when looking at the transmissivity maps and capture zones is that the forecasts differ significantly from the reference (Figs 1, 2 and 3). To quantify this discrepancy, we introduce two error norms that allow comparison of one forecast capture zone with the reference:

$$e_{ma} = \frac{N}{B+N} = \text{missed area} \quad e_{uc} = \frac{P}{B+P} = \text{useless cost}$$

where N [m2] is the area of the protection zone that is not correctly identified by the forecast, B [m2] is the area of the reference protection zone that is correctly forecast, P [m2] is the area wrongly forecast as belonging to the protection zone. In other words, e_{ma} is the percentage of the reference that has not been identified; and e_{uc} is the percentage of the forecast that is unnecessarily protected. In the direct conditional-simulation approach and in the inverse approach, several simulations have been constructed for a given data set. In these two cases, the uncertainty is estimated by constructing the maps of the probability for a point to belong to the capture zone. Examples of these maps are shown in Fig. 3. In addition to the two error norms presented above, we propose to quantify the uncertainty with the following dimensionless number:

$$u = \frac{I}{N+B} = \text{uncertainty}$$

where $N + B$ [m2] is the area of the reference protection zone, and I [m2] is the area located between the 0.9 and 0.1 isoprobability contours. The missed area e_{ma} and useless cost e_{uc} errors are calculated as well for the different levels of probability. Figure 4 summarizes the results of our calculations for the three approaches considered.

When the direct approach with kriging is employed, we find that the error decreases as expected when we add T data (Fig. 4(a)). The reduction becomes stronger when the average distance between the data point is lower than the integral scale. The
Fig. 3 Examples of the probability maps calculated in the case of 21 T measurements. The thick line represents the reference. The grey area, the zone forecasted by kriging. The thin lines represent the isoprobability contours for every value between 0.1 to 0.9 with a step of 0.1 when using: (a) 100 conditional simulations only with the 21 T, (b) 100 conditional simulations with the 21 T and the 1000 head measurements.

Fig. 4 Synthesis of the results: (a) error norms vs mean distance between the samples, (b) uncertainty vs mean distance between the samples, (c) error norms vs probability threshold for the simulations with 21 T values, (d) same graph but 1000 additional head measurements used to condition the T fields, (e) and (f) error norms vs d for different probability thresholds. (See comments in the text.)

behaviour is similar for the missed area (e_{ma}) and the useless cost (e_{cu}). Note that even in the best case (1000 T measurements), there is still about 50% of the forecast protection zone that is useless ($e_{cu} = 0.5$) even if a large part of the reference protection zone is correctly identified ($e_{ma} = 0.3$). When stochastic simulations are employed, the uncertainty reduces, as expected, when the distance between the samples reduces (Fig. 4(b)). The reduction is stronger when the mean sample distance is lower than the integral scale ($d < 1$). Like previous authors (Wen et al., 1996; van Leeuwen et al., 2000; Bakr & Butler, 2004), we observe that the inverse approach allows reduction of the uncertainty. This reduction is more important when the T measurements are too distant to allow capture of the main transmissivity field structure. What is specific to our example is that the level of uncertainty remains very significant even when a large
number of samples is used. The uncertain area still has a size that is 1.8 times the area of the reference protection zone for 1000 samples.

An interesting aspect of the stochastic simulations is that the resulting probability map can be used as a tool to help decision makers. The decision maker can define a level of risk (a probability value) that he is ready to accept and based on this probability, identify the area on the map corresponding to this level of risk. By doing so, the error becomes a function of this probability value. A risk prone decision maker will select a high probability value (0.9 for example) and will apply the protection measures only to this area. As we can see in Fig. 4(c), in this case, the decision maker will miss a large part of the zone that he should have protected (e_{ma} close to 1), but he will reduce the surface that is protected unnecessarily (e_{uc} close to 0). It is interesting to notice that adding head data allows considerable reduction of the errors for all probability values if the number of T data is small (comparison of Fig. 4(c) and 4(d)). Figures 4(e) and 4(f) demonstrate that adding data points reduces the missed area for all probability levels; however, the useless cost error has significantly increased when going from 21 to 250 T measurements. A relatively surprising result is that the kriging forecast performs as well as the simulations. Finally, it is important to note that all the errors remain rather high in this study and even for the case with the highest number of samples. If we analyse in detail the results of the inverse approach, the statistics show that the characterization of the T field improves considerably when adding more data, but the head conditioning is not very efficient in improving the T field except in the case of 21 T measurements. In the case of a 1000 h samples for example, the head field is reproduced very well but the improvement of the T field is rather limited.

CONCLUSION

The performances of kriging, stochastic simulations, and stochastic inversion for characterizing a braided alluvial aquifer and predicting protection zones have been compared. If most trends in our results are similar to those already published, the most important point is that even with a large number of data points, it remains difficult for the geostatistical techniques to identify the deterministic structures that control the shape of the protection zone. With a thousand T data, and even by taking a safe probability value of 0.2, the forecast still misses about 30% of the reference capture zone and in this case overestimates the area that should be protected by 60%. This is a rather disappointing result: it demonstrates that an accurate forecast in this specific example requires an amount of data that is not realistic. We think that there are two reasons for this behaviour. First, geostatistics cannot create information at a scale which is below the resolution of the sampling. Second, the fact that we are using a conceptual stochastic model that does not explicitly include the channels probably has a high impact as well. However, this result should not be misunderstood. We are convinced that stochastic techniques have a major role to play in applied studies like the delineation of protection zones. However, the practitioner must be aware that the accuracy of the forecast will depend on the amount of data available and on the adequacy of the model with the real field structure.
REFERENCES

