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Abstract We consider a single pumping well within a two-dimensional 
heterogeneous aquifer, in the presence of a mean uniform background 
gradient. We analyse the uncertainty associated with the location of the 
stagnation point which is generated downstream of the well and the maximum 
lateral extent of the well recharge area. The study is relevant for risk 
assessment practice, since it allows one to estimate the maximum width of the 
region contributing to the well and to properly locate regions of inversion of 
the flow direction. The problem is approached within a numerical Monte 
Carlo framework and the dependence of the main statistics of the quantities of 
interest on the moments of the log-conductivity field is studied. An assessment 
of the impact of one conductivity datum at the pumping location is performed. 
Keywords conditioning; stagnation point; stochastic; well-catchments; width of catchments 

 
 
INTRODUCTION AND PROBLEM SETTING 
 
Knowledge of the main characteristics of the region of influence of an extraction well 
operating in a (generally heterogeneous) aquifer is relevant for securing the long-term 
viability of drinking water derived from groundwater resources. A common way to 
cope with aquifer heterogeneity is to assume that the natural logarithm of the hydraulic 
conductivity is a Spatial Random Function, eventually conditioned upon measurements 
taken at some locations. This leads to a probabilistic interpretation of the concept of 
well catchment, which has been addressed both numerically, via Monte Carlo 
procedures (e.g. Franzetti & Guadagnini, 1996; Vassolo et al., 1998), and by means of 
analytical and semi-analytical methods (e.g. Stauffer et al., 2004; Riva et al., 2006). 
 Here we study the statistics of the main geometric features of the catchment of a 
pumping well which is extracting a given flow rate from a randomly heterogeneous 
aquifer. We are mainly concerned with the answer to the following key questions of 
practical interest: (a) what is our ability to predict the position of the stagnation point 
which is generated downstream of the well? and (b) what is our ability to predict the 
maximum width of the well catchment? While the location of the stagnation point is 
linked to the downstream limit of the region directly contributing water to the well, in 
standard practice the width of the well’s region of influence is usually extended to the 
ultimate recharge area and is made to conform to variability in the mapped flow 
direction. To answer these questions, we consider the problem of a steady state 
pumping well located at the centre of a square domain, with the following boundary 
conditions: a prescribed hydraulic head is imposed on the west boundary, the north and 
south sides are impermeable, and a constant flux is imposed along the east boundary. 
We begin by studying the statistics of the stagnation point and maximum width of the 



Recharge fronts and stagnation areas for pumping wells 
 
 

235

well catchment as a function of the main statistics of the underlying log-conductivity 
field, in the presence of a deterministic and constant porosity. We then analyse the 
impact of one conductivity datum, Km, available at the pumping station. This is a 
common situation in practice where the statistical properties of the hydraulic 
parameters of the aquifer can be (at best) inferred by pumping test analysis while the 
local conductivity at the well is generally inferred by sieve-analysis. The problem is 
tackled entirely within a numerical Monte Carlo framework. 
 
 
DIMENSIONAL ANALYSIS 
 
We set a Cartesian coordinate system, centred at the well, with the x-axis aligned along 
the direction of the mean background flow and oriented along the upstream direction. 
The stagnation point xs ≡ (xs, ys) is described by the following functional relationship: 

),,,( 0 LqQKfx cs =  (1) 

where Kc is the (random) conditional conductivity process, Q is the well pumping rate 
per unit thickness of the aquifer, q0 is the natural base flow, L is a characteristic length 
scale of the flow domain. Here and in the following f represents functional relation-
ships at different stages of the dimensional analysis. We consider the case where a 
single measurement of conductivity, Km, is available at the well position xw ≡ (xw, yw). 
Then, the conditional log-conductivity, Yc = lnKc, is expressed in terms of the 
unconditional and stationary log-conductivity field, Y, and the log-conductivity 
measured at the well, Ym = lnKm. We model Y as a Gaussian process, characterized by 
its variance, , correlation function (with correlation scale λ) and constant geometric 
mean of K, KG; Q, q0, and L are treated as deterministic quantities. It can be shown, on 
the basis of the work of Riva et al. (2006), that the first and second moment of a 
particle trajectory in a randomly heterogeneous medium do not depend (at least to 
second order—in σY—of approximation) on KG. For a given functional format of the 
log-conductivity covariance, the statistical moment of ith order of xs, , is given 
by the relationship: 
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Choosing Q and q0 as fundamental quantities, the mean stagnation point, sss yxx ,≡ , is 
then given by: 
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where xs0 is the abscissa of the stagnation point in a bounded, homogeneous aquifer. 
The longitudinal and transversal components of the variance of the stagnation point, 
which are respectively indicated as  and  are governed by: 2
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 In our case the maximum transverse width of the catchment, D, occurs at the east 
side of the domain and is given by mass conservation as D = Q/q0. Since Q and q0 are 
deterministic, D is also constant and deterministic with a random location, yG, of its 
centre of mass. Due to symmetry, the ensemble mean of yG vanishes. The variance of 
yG, , is then provided by the following functional relationship: 2

yGσ
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Here we are concerned with heterogeneous domains with constant L, and boundary 
conditions (Q and q0), so that the effects of L/(Q/q0) will not be considered in 
equations (3)–(5). 
 
 
MODEL SIMULATION SET UP AND RESULTS 
 
We performed numerical Monte Carlo simulations in a square domain discretized by 
280 × 280 elements of uniform size Δ = 0.1, in consistent units (L = 280 × Δ = 28). The 
constant hydraulic head H = 10 is prescribed along the west side, the constant flux 
q0 = 0.5 (also in consistent units) is fixed along the east side; no-flow is imposed along 
the remaining sides. A well extracting the constant rate Q = 4πq0 is placed at the centre 
of the grid (xw = 0, yw = 0). The Gaussian sequential simulator GCOSIM3D (Gómez-
Hernández & Journel, 1993) was used to generate unconditional and conditional 
realizations of the log hydraulic conductivity with KG = 100 and simple exponential 
covariance. The main parameters were varied within the following ranges: (i) 0.5 ≤ λ ≤ 
30 (i.e., 0.018 ≤ λ/L ≤ 1.071), 0.1 ≤  ≤ 1.0 and Km = KG (Test Case C1); (ii) KG × 
exp(2σY) (Test Case C2); and (iii) KG × exp(–2σY) (Test Case C3). A total of 1000 
Monte Carlo runs were performed for each combination of parameters. 

2
Yσ

 Figure 1 depicts the dependence of 0/ ss xx  on λ/L and  for the unconditional 
(Fig. 1(a)) and conditional (Fig. 1(b)) scenarios. The 95% confidence intervals, 
rendering the uncertainty associated with the ensemble moment evaluated on the basis 
of a finite sample of Monte Carlo runs, are also reported for the unconditional results. 
In the unconditional case, we note that 

2
Yσ

0/ ss xx  does not depend on the correlation scale 
when  = 0.1, and the largest percentage difference between 2

Yσ sx  and 0sx  is less than 
3%. The effect of a finite correlation begins to appear for  = 0.5. The partial 
overlapping of the confidence intervals suggests that a quantitative analysis of the 
influence of λ/L and  on the mean stagnation point is not completely feasible with 
1000 Monte Carlo runs. The results of Fig. 1(a) can be explained upon considering that 
the hydraulic conductivity is practically uncorrelated when λ/L is very small so that 
high and low conductivity blocks may alternate frequently in the domain; as a 
consequence, particle trajectories are characterized by frequent and small amplitude 
fluctuations around the mean. Contrariwise, when λ/L increases, the transport process 
is governed by contrasts of conductivities between large zones, so that particle 
trajectories can deviate significantly from the mean. The results reveal that the 
stagnation point is moved (in the mean) away from the well when λ/L is small. The  
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Fig. 1 Dependence of the normalized mean stagnation point on the normalized 
correlation scale for: (a) unconditional, and (b) conditional fields. Vertical bars 
indicate the 95% estimated confidence intervals.  
 

 

0.0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1λ/L

2
ysσ

2 0 1Y .σ =
2 0 5Y .σ =
2 1 0Y .σ =

Δ

♦

0.0

0.4

0.8

1.2

1.6

0 0.2 0.4 0.6 0.8 1
λ/L

2
xsσ

2 0 1Y .σ =
2 0 5Y .σ =
2 1 0Y .σ =

Δ

♦

(a)

0.0

0.4

0.8

1.2

1.6

0 0.2 0.4 0.6 0.8 1
λ/L

2
xsσ

2 0 1Y .σ =
2 0 5Y .σ =
2 1 0Y .σ =

Δ

♦

(a) (b)

0.0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1λ/L

(a) (b)(b) 
2
ysσ

2 0 1Y .σ =
2 0 5Y .σ =
2 1 0Y .σ =

Δ

♦

2 0 1Y .σ =
2 0 5Y .σ =
2 1 0Y .σ =

2 0 1Y .σ =
2 0 5Y .σ =
2 1 0Y .σ =

Δ

♦

Fig. 2 Dependence of: (a) longitudinal, and (b) transverse variance of the stagnation 
point on λ/L and σ2

Y for the unconditional cases. Vertical bars indicate the 95% 
estimated confidence intervals. 

 
ratio 0/ ss xx →1 when λ/L → ∞, since hydraulic conductivity tends to become a 
random constant. In the conditional scenario (Fig. 1(b)) we note that 0/ ss xx : (i) is not 
influenced by conditioning when Km = KG (Test Case C1); and (ii) is located closer to 
or farther from the well if Km > KG (Test Case C2) or Km < KG (Test Case C3), 
respectively. While conditioning by large Km forces solute particles to be attracted by 
the well, the opposite occurs when one conditions on low Km. Similarly to what was 
observed previously, the behaviour is non-monotonic with λ/L.  
 Figure 2 depicts the dependence of the longitudinal (Fig. 2(a)) and transverse  
(Fig. 2(b)) variance of the stagnation point on λ/L and , together with the associated 
95% confidence intervals, for the unconditional simulations. Both variances first 
increase, reach a maximum and then decrease with λ/L. They vanish in the limits for 
λ/L → 0 and λ/L → ∞. This behaviour is explained by the same mechanism presented 
above. Our simulations reveal that both  and  increase linearly with  (details 
not shown). 
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when σ2

Y = 1.0.  
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and (b) dependence of standard deviation of yG on λ/L for σ2
Y = 1.0 for both 

unconditional and conditional cases. Vertical bars indicate the 95% estimated 
confidence intervals. 

 
 
 Figure 3 depicts the dependence of the dimensionless longitudinal, ||/ sxs xσ , and 
transverse, σys/(Q/q0), standard deviations of the stagnation point for the unconditional 
and conditional cases, when = 1.0. Figure 3(a) shows that conditioning generally 
produces a decrease of 

2
Yσ
||/ sxs xσ . The effect is stronger when conditioning is perform-

ed on the smallest Km values, as the rate of increase of σxs with respect to λ/L is lower 
than that of the mean distance from the well, sx . For large values of λ/L conditioning 
on KG has no effect, while conditioning on small or large Km values has practically the 
same effect. In Fig. 3(b) one can recognize that σys/(Q/q0) is practically not influenced 
by conditioning when Km = KG, while the uncertainty increases when conditioning is 
performed on low Km values (the overall width of the region contributing to the well 
increases in the proximity of the well), and decreases for large Km values (the overall 
transverse extent of the region of influence close to the well decreases). 



Recharge fronts and stagnation areas for pumping wells 
 
 

239

 Figure 4(a) depicts the unconditional variance of centre of gravity of the limit of 
the recharge front, , as a function of λ/L and , with the 95% confidence 
intervals. Similar to that observed for the variance of the stagnation point, increasing 
λ/L causes  to increase, to reach a maximum and finally to decrease. It appears that 

the value of λ/L at which  is maximum increases as  decreases. In contrast to 

what was observed for the stagnation point variance,  displays a nonlinear 

dependence on , especially for large λ/L (not shown here). The dependence of the 
dimensionless second order moments of yG, σyG / (Q/q0), on λ/L for the conditional and 
unconditional cases is depicted in Fig. 4(b) for  = 1.0. The effect of conditioning is 
similar to that observed for the transverse variance of the stagnation point. 
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CONCLUSIONS 
 

Our work leads to the following major conclusions: 
– The mean location of the stagnation point depends linearly on , while it depends 

nonlinearly on λ/L. From a practical standpoint, the effect of λ/L and  is not very 
relevant (percentage differences between 

2
Yσ

2
Yσ

sx  and xs0 are less than 7% for all the cases 
considered), thus corroborating previous findings about robustness of the zero-order 
solution of low order moments of particle trajectories under non-uniform flow con-
ditions (Riva et al., 2006). The mean stagnation point is drawn close to or far from 
the well, depending on whether the well is located within a locally high or low 
conductivity area. The predicted stagnation point practically coincides with that of 
a homogeneous domain when conductivity is highly correlated within the aquifer. 

– Transverse and longitudinal variance of the stagnation point increase with  and 
display a non monotonic dependence on λ/L. Conditioning generally produces a 
decrease of the longitudinal coefficient of variation of the stagnation point. The 
uncertainty associated with the transverse location of the stagnation point is larger 
when the well is located within a locally low conductivity region. 

2
Yσ

– The dependence of the location of the centre of gravity of the well recharge front 
on the domain heterogeneity is qualitatively similar to what observed for the 
transverse variance of the stagnation point. 
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