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Abstract Steady-state catchments of pumping wells can be determined for 
equivalent parameters using various existing codes for groundwater 
modelling. The catchment boundary may be obtained by calculating the 
boundary path lines starting at a stagnation point in a reversed flow field. 
However, how uncertain is the result for heterogeneous aquifers and uncertain 
mean recharge? A method is proposed to estimate the uncertainty of the 
location of the catchment boundary in two-dimensional steady-state aquifers 
due to the combined effect of the uncertainty of the spatially variable 
unconditional transmissivity field and of the uncertain mean areal recharge 
rate. The former is based on the semi-analytical first-order theory, which 
allows estimates of the lateral second moment (variance) of the location of a 
moving particle. The method allows post-processing of results from 
groundwater modelling with respect to uncertainty estimation. In order to test 
the methodology it is compared with results from Monte Carlo simulations. 
Keywords groundwater; protection zones; spatial variability; uncertainty estimation 

 
 
INTRODUCTION 
 
Regulations for the protection of drinking water wells require the designation of the 
recharge area or catchment of wells. Very often, in practice, only limited information 
is available for their delineation. How uncertain are well catchments resulting from 
deterministic groundwater modelling? Various attempts were undertaken in the past in 
order to answer this question using Monte Carlo type approaches, e.g. by van Leeuwen 
et al. (1998). Stauffer et al. (2002) formulated a first-order, unconditional semi-
analytical Lagrangian method, which allows approximate evaluation of the uncertainty 
in the location of two-dimensional, steady-state catchments of pumping wells due to 
the uncertainty of the spatially variable hydraulic conductivity or transmissivity field. 
They applied their method successfully to a set of simple rectangular flow 
configurations. Stauffer (2005) reformulated the method in order to account for non-
uniform recharge and non-uniform aquifer thickness in non-rectangular domains, 
which are often encountered in practice. This allows a post-processing of the results 
from standard groundwater models. Hendricks Franssen et al. (2002) investigated the 
impact of variable recharge on the characterization of well catchments using Monte 
Carlo type techniques. They found a much larger influence of the uncertainty in the 
mean recharge compared to the uncertainty due to spatial variability in recharge. In 
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this paper we investigate an approximate approach to extend the semi-analytical 
Lagrangian method in order to incorporate the effect of uncertainty in mean recharge. 
The results for a test case are compared with those from numerical Monte Carlo 
simulations in order to assess the quality of the results. 
 
 
IMPACT OF SPATIAL VARIABILITY IN TRANSMISSIVITY 
 
The uncertainty in the location of the well catchment boundary is formulated along the 
trajectory starting at the stagnation point and proceeding upstream. The ensemble 
mean trajectory is determined for the flow field calculated with constant equivalent 
transmissivity, Teq, which is approximated by the geometric mean transmissivity. 
Spatial variability of log-transmissivity Y(x) = ln(T(x)) along the mean trajectory s(x) 
(Fig. 1) is considered by taking into account an isotropic exponential covariance 
function of log-transformed values with parameters describing the variance and 
correlation length. The lateral second moment of the particle displacements can be 
approximated by an integral expression (Stauffer et al., 2002, 2004; Stauffer, 2005), 
which can be numerically evaluated. All these semi-analytical approaches make use of 
an empirical relationship to estimate the location uncertainty of the stagnation point. 
The result is an estimate of the variance of the location uncertainty σ2

pY(s(x)) along 
s(x). 
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Fig. 1 Schematic catchment of a pumping well at xw with constant head and 
impermeable boundary conditions and constant recharge rate N with solution for 
equivalent transmissivity; curved coordinate system p–l along catchment boundary 
s(x) starting at stagnation point S1 or S2. 

 
 
IMPACT OF UNCERTAINTY IN THE MEAN RECHARGE RATE 
 
Uncertainty due to variability in the mean recharge rate N alone can be assessed in a 
straightforward manner. For cases where the mean recharge rate Nmean can be assumed 
to be normally distributed, the catchment boundaries for equivalent transmissivity  
can be determined using standard groundwater models for the cases: (a) N = Nmean,  
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(b) N1 = Nmean – 2σN and (c) N2 = Nmean + 2σN, where σN is the standard deviation of N. 
The symbol Nmean is the ensemble mean recharge rate. The trajectories s(x, N) in case 
(b) and case (c) limit the 95% bandwidth of the catchment boundary due to variability 
in mean recharge rate N. Along the trajectory s(x, Nmean) the increments p1(s(x)) and 
p2(s(x)) relative to s(x, N1) and s(x, N2) can be determined. 
 
 
COMBINED EFFECT 
 
It is assumed that for a given recharge rate N the probability density function (PDF) 
perpendicular to the mean trajectory s(x, Nmean) due to variability in Y = ln(T) obeys a 
Gaussian distribution with mean value p′  and variance σ2

pY where p′ is a location 
along the coordinate p normal to s(x, Nmean) with p = 0 on s(x) (Fig. 1). The recharge 
rate N itself is a Gaussian distribution with mean value Nmean and variance σ2

N. It can 
be translated to an asymmetric PDF along p using the concept that the catchment area 
A = Q/N can be expressed by A = Amean – Bmean p′ with Amean = Q/Nmean assuming an 
unknown constant width Bmean. The latter can be estimated for a given location s(x) by 
averaging the widths B1 and B2 corresponding to N1 (case b) and N2 (case c), B1 =  
(A1 –Amean)/p1 and B2 = (A2 – Amean)/p2 using the increments p1(s(x)) and p2(s(x)), 
which are determined above. Assuming independence in the distributions f(p) due to Y 
and Nmean, the combined (again asymmetric) PDF can be stated as: 
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Equation (1) can be used to express the combined variance. The parameters are 
σN/Nmean, and p1/p2. The end result can be stated as follows. For the part of the 
perpendicular coordinate p corresponding to a recharge rate N lower than Nmean with p 
≥ 0 (outer part) and integration between p′ = –∝ and 0, the combined variance gets: 

4
))(())(())(())((

2
1122

1,
xsxsxsxs pf

pYp +σ=σ  (2) 

and for the rest of the coordinate with p < 0 (inner part) and integration between p′ = 0 
and ∝ it is: 
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The symbols f1 and f2 are factors, which in principle may depend on the location along 
the trajectory. Accordingly, separate values for the variance are estimated for each side 
along the mean trajectory. 
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MONTE CARLO SIMULATIONS 
 
The expected location of a well catchment for inhomogeneous transmissivity and 
uncertain mean recharge rate is numerically analysed using a Monte Carlo based 
method (Gómez-Hernández & Journel, 1993). The analysis consists of the following 
steps: 
− Multiple equally likely unconditional log-transmissivity realizations are generated. 
− Multiple equally likely mean recharge rates are generated. 
− The groundwater flow equation is solved for each of the generated transmissivity 

fields and recharge rate. In its current implementation, these equations are solved 
by block-centred finite differences. 

For each of the realizations a particle is released at the centre of a grid cell and it is 
recorded whether the particle is captured by the pumping well. Averaging over the 
ensemble of realizations yields the probabilistic well catchment. 
 
 
APPLICATION TO A TEST CASE 
 
For comparison, the methodology was applied to a synthetic study for the catchment of 
a pumping well (Fig. 1). The two-dimensional rectangular domain has dimensions of 
4900 × 5000 m. The northern and southern boundaries are impervious, along the 
western boundary a fixed head of hwest = 0 m is imposed, and along the eastern 
boundary a fixed head of heast = 5 m prevails. A pumping well with pumping rate  
Qw = 5000 m3 day-1 is located at a distance of 1900 m from the western boundary, and 
2450 m from the southern boundary. The area receives a spatially uniform recharge of 
Nmean = 1 mm day-1. The variability in mean recharge rate N is σN/Nmean = 0.198. 
Porosity is taken as n = 0.1. Steady-state groundwater flow in a semi-confined aquifer 
is simulated. Geometric mean transmissivity is Teq = 101 m2 day-1. The variance of  
Y = ln(T) is σY

2 = 1 and the correlation length IY = 500 m. For the chosen conditions 
with equivalent parameters, a water divide is present along the eastern part of the area, 
and the well pumps water from a considerable area located west of the water divide. 
For the Monte Carlo simulations the domain was discretized by 50 × 50 squared grid 
cells of size 100 m. 

The 95% uncertainty bandwidth of the catchment boundary due to spatial 
variability in Y only is shown in Fig. 2 for the Monte Carlo simulation and the semi-
analytical approximation (±2σpY). The semi-analytical approximation is not valid close 
to boundaries as stated in Stauffer et al. (2002). 

The effect of uncertainty in the mean recharge rate N is depicted in Fig. 3. The 
95% uncertainty bandwidth is about constant except close to boundaries. The 
combined effect of variability in log-transmissivity Y and in the recharge rate N is 
evaluated using equations (1) and (2). The factors f1 and f2 are found to be about 1 for 
the case investigated. They are determined for the stagnation point S1 and adopted to 
the further locations thus making use of the observation that the ratio p1/p2 is about 
constant. This allowed simplification of the calculations. Nevertheless the approach 
can be easily extended in order to take into account p1/p2(s(x)). The uncertainty 
bandwidth is composed of the outer part with p ≥ 0 and width 2σp,1 and the inner part  
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Fig. 2 Uncertainty (95%) bandwidth of the catchment boundary due to spatial 
variability in transmissivity only. Left: Monte Carlo simulation using 500 realizations. 
Right: Semi-analytical solution. 
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Fig. 3 Uncertainty (95%) bandwidth of the catchment boundary due to variability in 
mean recharge rate only with coefficient of variation of 19.8%. Semi-analytical 
solution. 
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Fig. 4 Uncertainty (95%) bandwidth of the catchment boundary due to combined 
effects of spatial variability in transmissivity and variability in mean recharge with 
coefficient of variation of 19.8%. Left: Monte Carlo simulation using 100 realizations. 
Right: Semi-analytical combined solution. 
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with p < 0 and width 2σp,2. The result of the simulation is shown in Fig. 4. Again, the 
solution is not valid close to boundaries. 
 
 
DISCUSSION AND CONCLUSIONS 
 
An approximate method is proposed to estimate the uncertainty of the location of the 
catchment boundary of a pumping well in a two-dimensional steady-state aquifer due 
to the combined effect of the uncertainty of the spatially variable unconditional log-
transmissivity field Y(x) and of the uncertain mean areal recharge rate N(Nmean, σ2

N). 
The former is based on the semi-analytical first-order theory, which allows estimates 
of the lateral second moment (variance) of the location of a moving particle along the 
mean trajectory s(x). The concept consists of the assumption that the combined effect 
can be evaluated in the normal direction p to the mean trajectory s(x, Nmean). The effect 
of variability in the mean recharge rate N for equivalent transmissivity can be assessed 
by simple groundwater modelling. Since the two contributions are assumed to be 
independent, the probability density function of the combined effect can be stated. This 
leads to a simple evaluation of the combined variance of the location uncertainty along 
the catchment boundary. As can be seen from the test case the result of the proposed 
method is in fair correspondence to the result of numerical Monte Carlo simulations 
except close to boundaries. The main attraction of the proposed method is the much 
smaller computational demand compared with numerical Monte Carlo techniques. 
Similar concepts can in principle be formulated for further cases like the impact of the 
location uncertainty of a boundary segment of the flow domain (characterized by a 
variance), again in combination with spatial variability in Y(x). 
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