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Abstract Point sources of wastewater in the subsurface are a potential threat 
to groundwater quality. Modelling wastewater transport and transformation 
requires dealing with a complex system of processes and interactions between 
solutes as well as between the solutes and the solid phase. Therefore the 
process-based reactive transport model WSTM (Water and Solute Transport 
Model) was developed, based on the random walk approach and fulfilling the 
Fokker-Planck equation for the unsaturated water flow. The main focus of this 
paper is on the mathematical formulation and applications of the model.  
Keywords random walk approach; reactive transport modelling; unsaturated zone 

 
 
INTRODUCTION  
 
Studies on groundwater and soil contamination require quantitative analysis of the 
migration of reactive substances. Predicting the effect of wastewater exfiltration from 
damaged sewers on groundwater quality makes especially necessary the understanding 
of the complex system of processes and interactions between solutes, as well as 
between the solutes and the soil matrix within the unsaturated zone.  
 Mathematical models for simulating this phenomenon consist of a set of coupled 
partial differential equations that describe the mass conservation of each species (Bear, 
1979). In general, these partial differential equations are solved by finite difference 
method or finite element method. As they are based on time and space discretizations, 
the size of the time and space steps should be chosen wisely; otherwise the numerical 
solutions may be inaccurate or unstable (Sun, 1996). Moreover, they suffer from 
numerical dispersion and high computational effort. To avoid numerical dispersion, 
various Langrangian and Eulerian-Lagrangian algorithms have been developed (e.g. 
Celia et al., 1989), such as the random walk method (Prickett et al., 1981).  
 This paper illustrates further development of the numerical method presented by 
Bücker-Gittel et al. (2002). This method is based on the random walk approach, 
balancing the water and associated mass transport in the unsaturated zone. It allows the 
quantification of the mass transfer between different phases (i.e. the mobile fluid 
phase, and immobile solid phase) and of the reactive processes. It is applied for 
investigating the plume development from a point source (e.g. sewer leak) in the 
unsaturated zone and its impact on groundwater. One advantage of the model is that 
the water and the solute transport are calculated simultaneously, without having to first 
run a flow model and then a transport model, saving simulation effort. 
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MODELLING APPROACH 
 
Water transport in the unsaturated zone 
 
Transport of dissolved solutes in the unsaturated soil zone depends on the unsaturated 
water flow, which is usually described by the Richards’ equation: 
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where is the unity vector in the vertical direction. This equation relates the temporal 
change in the volumetric water content ∂θ/∂t (cm

→

ze
3 cm-3 s-1) to the gradient on the water 

suction ∇ψ(θ) and to the hydraulic conductivity K(θ) (cm s-1). The variability in the 
volumetric water content θ (cm3 cm-3) is limited by the maximum value of the 
saturated water content θs (cm3 cm-3) (theoretically the porosity) and by the residual 
water content θr (cm3 cm-3).  

With regard to the microscale variability of the pore sizes and the associated 
capillary forces, equation (1) could be formulated as a Fokker-Planck equation for the 
volumetric water content θ (Bücker-Gittel et al., 2002): 
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with the capillary diffusivity D(θ) (cm2 s-1) defined as: 
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Equation (2) balances the water transport in the unsaturated zone. The diffusive 
term (A) accounts for the spreading of the seepage water due to capillary forces. Term 
(B) describes the vertical movement due to gravity (i.e. advection). 

 
 
Solute transport in the unsaturated zone 
 
Solute transport, including the reactions and the mass transfer between the phases in 
the unsaturated zone, is treated similarly to the transport in the saturated zone. It is 
associated with the water flow, which is determined by advection (gravitational force) 
and by the capillary diffusivity (capillary force). In contrast to the saturated zone, in 
the unsaturated zone the capillary diffusivity is dominating dispersion and molecular 
diffusion. Hence, the solute mass transport equation for the concentration C (mg L-1) is 
given by: 
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Random walk approach 
 
In general, the random walk approach considers the mean transport velocities as well as 
random velocities fluctuations within a REV (representative elementary volume) of the 
porous media. Here, the capillary forces on the pore scale generate these fluctuations. 
 As the Richards’ equation is reformulated as a Fokker-Planck equation (2) for the 
water transport, the random walk approach can be used for balancing the water flow in 
the unsaturated zone by moving particles representing a defined water volume Vw. 
Furthermore, the similarity between equations (4) and (2) leads to the representation of 
the mass transport by defining mass loadings for each particle, mp

k (k being the solute 
index). The total displacement of a randomly moving particle p consists of an 
advective and a dispersive movement and is calculated by (Bücker-Gittel et al., 2002): 
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where Z is a normally distributed random variable with zero mean and unit variance. 
To account for the non-uniform flow field, the advective step includes a correction 
term ∂D/∂z. The physical meaning of this term is the conservation of particle flux due 
to dispersion between two locations with different assigned flow velocities (Hoteit et 
al., 2002). 

To balance the water content and the solute masses, the model domain is divided 
into uniform cells of constant length, δx = δy = δz. The number of particles defines the 
volumetric water content θ. The dissolved concentration Cd

k (i) is determined by 
summing up the mass loadings for each solute: 
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where Np is the number of particles per cell, dV is the cell volume (cm3), i denotes the 
cell index and k is the solute index. Furthermore, the hydraulic conductivity K(θ) and 
the capillary diffusivity D(θ) are calculated for each cell by using the Brooks & Corey 
(1966) relationship.  

By adding particles an infiltration source is simulated. These particles are moved, 
reflected at the closed boundaries and removed when crossing an open boundary (e.g. 
groundwater table, free outflow). 
 
 
Mass exchange 
 
When a particle p moves, it represents the mobile fluid phase and brings the solute 
mass from one location to another one. At the same time it exchanges mass with the 
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immobile solid phase (i.e. the cell). In WSTM this exchange takes place between 
individual particles and the respective cell. For example, in the case of linear sorption 
under equilibrium conditions, there are two masses to be dealt with within a cell at any 
time: the dissolved mass md 

k (mg), and the sorbed mass ms
k (mg): 

∑
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The exchange coefficient f k (i) is given by: 
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where ρs (g cm-3) is the solid density, n (–) is the porosity of the domain and Kd (L kg-1) 
is the distribution coefficient. At each time step the particle mass has to be updated 
with respect to that mass exchange. Thus the mass carried by the particle, or the 
concentration in a cell, is continuously changed as a particle passes through a cell and 
exchanges masses with it. The sorbed/desorbed mass at every given location in time 
and space is known by the exchange coefficient f k(i) and the dissolved mass. 
 
 
NUMERICAL INVESTIGATIONS 
 
A three-dimensional numerical example is considered for the investigation of the effect 
of linear sorption on the solute transport in an unsaturated homogeneous soil. The 
dimensions of the model domain were 0.6 × 0.6 × 1.5 m (Fig. 1) and it was divided 
into uniform cells of length δx = 0.05 m. The lateral boundaries as well as the top 
boundary were defined as no-flow boundaries and the bottom boundary was represent-
ted by saturated conditions (i.e. groundwater table at z = 0 with Ψ = 0). At the 
elevation z = 0.95 m, particles were injected characterizing a sewer leak. The initial 
volumetric water content distribution was calculated for hydrostatic conditions. 
 From t = 0 to t = 3600 s, water mixed with a conservative solute and a sorptive 
solute was infiltrated with an infiltration rate Q = 0.0216 m3 day-1 into an initially clean 
environment (C0 = 0). The concentrations of both solutes were assumed to be 1 mg L-1. 
After t = 3600 s, the injected water became clean. The model input data are given in 
Table 1, where αvG and nvG are the van Genuchten parameters (van Genuchten, 1980). 
Figure 1 illustrates the development of the plume for the volumetric water content 
(Fig. 1(a)), and for the solutes (Fig. 1(b) and (c)). For comparison reasons only, the 
dissolved part of both solutes is presented here. 
 At the beginning of the infiltration the wetting front was almost radial, while with 
increasing time the water distribution showed more a downward than lateral spreading 
behaviour (Fig. 1(a)). Only the soil near the leak was saturated, whereas the parts down 
to the groundwater table remained unsaturated. Due to this saturation the area above 
the sewer leak behaves similar to a “capillary fringe” resulting in a large increase in the 
volumetric water content. 
 The distribution of the conservative solute that was not adsorbing on the soil 
matrix but remained in the fluid phase shows a high dilution effect (Fig. 1(b)), with the 
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 (a)        (b)          (c) 

Fig. 1 Distributions of: (a) volumetric water content, (b) concentration of conservative 
solute, and (c) concentration of sorptive solute, at t = 5400 s. 

 
 
Table 1 Model input data. 

Solute Ksat 
(m s-1) 

 θs  
(cm3 cm-3) 

θr    
(cm3 cm-3) 

αvG  
(m-1) 

nvG  
(–) 

ρs 
(g cm-3) 

Kd  
(L kg-1) 

A 1 × 10-4 0.4 0.06 6.0 1.7 2.65 0 
B 1 × 10-4 0.4 0.06 6.0 1.7 2.65 5.8 

 
concentration about 10 times lower than the input concentration. The plume of the 
reactive solute (Fig. 1(c)) has been significantly decreased in comparison with the 
conservative one (Fig. 1(b)) because a part of the solute mass, which was first diluted 
in the fluid phase, was then adsorbed onto the soil matrix.  
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Fig. 2 Evolution of: (a) volumetric water content, (b) concentration of conservative 
solute, and (c) concentration of sorptive solute. 
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 Figure 2 shows the layer-wise averages of the water content and solute 
concentrations for different simulation periods. The average volumetric water content 
(Fig. 2 (a)) was relatively constant over the plotted time periods. The conservative 
solute reached an average concentration of 0.04 mg L-1 after 1 hour of infiltration. 
After this time, the solute concentration decreased gradually and was flushed out with 
the incoming clean water. Plotting the sorptive solute for the same periods, the strong 
uptake of the solute by the matrix, together with the dilution effect, reduces the 
maximum concentrations in the dissolved phase by 95%. Therefore, a significant part 
of the solute was stored in the soil for a relatively long time, causing a potential risk 
for the groundwater resources. The solutes reaching the groundwater were highly 
diluted and retarded. 
 
 
CONCLUSIONS 
 
If the Richards’ equation is reformulated as a Fokker-Planck equation for the water 
transport, the random walk approach can be used for balancing the water flow in the 
unsaturated zone by moving particles representing a defined water volume. Also, the 
mass transport can be represented by defining mass loadings for each particle. Thus, 
the unsaturated water transport and mass transport can be computed together. This 
approach is implemented in the numerical model (WSTM). It was applied to simulate a 
sewer leak infiltration in unsaturated soils considering conservative and sorptive 
solutes. The distributions of the water content and the solutes concentration are well 
represented.  
 For the complete assessment of wastewater impacts on soils and groundwater, 
detailed understanding of migration and transformation of substances in the subsurface 
is required. The implementation of the relevant transformation processes (e.g. redox-
reactions) into the numerical model enables detailed investigation of their interactions 
on transport. Simulation results considering transformation processes will be validated 
by the use of the experimental results in order to provide a tool with predictive 
capability.  
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