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Abstract The random walk particle tracking method has become an important 
tool for the uncertainty assessment of solute transport models due to its 
computational efficiency and the non-existence of numerical dispersion. Yet, 
in highly heterogeneous aquifers the smoothness assumption of the velocity 
field, requisite for a correct solution of the random walk equations, may not 
hold anymore. Three different numerical methods to overcome this problem 
are numerically evaluated. The results demonstrate that in an aquifer with an 
isotropic spatial correlation, and following a multi-Gaussian random function 
with a small connectivity of extreme values, all techniques are able to model 
solute transport correctly, even for a hydraulic conductivity variance of σ2

lnK = 4.  
Keywords heterogeneity; local mass conservation; numerical implementation;  
random walk particle tracking; solute transport  

 
 
INTRODUCTION 
 
Eulerian transport models are often plagued by numerical dispersion or artificial 
oscillations, especially for advection-dominated problems. To reduce these problems, a 
higher grid resolution and smaller time steps may be applied, resulting in large 
computational times.  
 One alternative to solve transport in heterogeneous porous media is the Lagrangian 
approach. In particular, the random walk particle tracking (RWPT) method, treats the 
transport of a solute by partitioning the solute mass into a large number of particles. It 
moves each particle through the porous medium using the velocity field obtained from 
the solution of the flow equation to simulate advection, and adds a Brownian random 
displacement to simulate dispersion. This approach avoids solving the transport 
equation directly and therefore is virtually free of numerical dispersion and artificial 
oscillations. Furthermore, computational times, even for models with a high grid 
resolution and characterized by strong heterogeneities, are significantly smaller than 
using the traditional Eulerian, mixed Eulerian-Lagrangian, or total variation 
diminishing (TVD) schemes (e.g. Tompson & Gelhar, 1990; Zheng & Bennett, 2002). 
These advantages have made the RWPT method a popular choice for complex, high-
resolution transport problems, inverse modelling, and uncertainty assessment of 
contaminant transport. 
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BASIC PRINCIPLES 
 
Random walk particle tracking is a method from statistical physics which has been 
used in the analysis of dispersion and diffusion processes in porous media. It is based 
on a similarity between the Fokker-Planck equation and the advection–dispersion 
equation. Using the similarity between these equations, solute concentrations are 
represented by the density function of particles that are moving following the Itô-
Taylor integration scheme (Gardiner, 1990): 

( ) ( ) ( ) ( ) twtttttt pppp ΔΔ⋅+Δ+=Δ+ ,, XBXAXX      (1) 
 with DuA ⋅∇+=    and TBBD ⋅=2  
where Xp(t) is the position of a particle at time t; A is a “drift” vector; B is a tensor 
defining the strength of dispersion which is related to the dispersion tensor D as shown 
above; u is the groundwater velocity; and Δw, an uncorrelated stochastic force, is a vector 
of independent normally distributed random variables with zero mean and unit variance. 

However, using Stratonovich’s interpretation of a stochastic integral leads to the 
following equation, by which the density function of particles also fulfils the 
advection–dispersion equation: 
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It can be seen that the drift vector and the dispersion tensor are evaluated at a 
moment halfway along the time step to the next particle position. Equation (2) is rarely 
used for the RWPT method, as this procedure requires an additional iterative scheme 
within each time step. Nevertheless, the modified velocity contains a derivative term 
reduced by a factor of 1/2. 
 
 
THE PROBLEM OF LOCAL SOLUTE MASS CONSERVATION 
 
Numerical implementation of the random walk equations is relatively simple, with one 
exception. When solving the flow equation using numerical methods the resulting 
hydraulic heads and the associated velocity field are usually computed at discrete 
points. Yet, simulation of solute transport by the random walk methodology requires 
continuous information about the velocity field. Therefore, a map of velocities from 
this discrete information has to be generated. This velocity map should fulfil the local 
fluid mass balance at any location and the local solute mass conservation at any grid-
cell interface. In general, there is not a simple solution to this problem, but several 
approaches have been proposed in the literature. 
 
 
The interpolation method 
 
The interpolation method is certainly the approach most commonly used to address 
this problem. It uses linear interpolation to obtain the groundwater velocity at any 
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point and bilinear interpolation to calculate the gradient of the dispersion term and the 
dispersion tensor. By means of this so-called “hybrid” scheme, the interpolation 
method fulfils both the fluid mass balance and the local solute mass balance. 
Nevertheless, using bilinear interpolation introduces a greater smoothing, which can 
lead to errors especially for highly heterogeneous aquifers. LaBolle et al. (1996) 
presented a detailed analysis of this method. 
 
 
The reflection principle 
 
The reflection principle was first presented by Uffink (1985) and is based on the idea 
of diffusion across a boundary with different diffusion coefficients. He suggested that 
part of a set of particles crossing from one domain into another with different diffusion 
coefficients must be reflected in order to obtain the correct concentration distribution 
across the boundary between the domains. This is done in RWPT by assigning a 
certain probability for a particle of crossing the domain interface, which depends on 
the diffusion coefficients on either side. The local flow mass balance is satisfied by 
using linear interpolation to calculate groundwater velocity. Various authors (Ackerer, 
1987; Cordes & Rouvé, 1991; Semra et al., 1993; Hoteit et al., 2002) have used this 
approach and suggested slight modifications. 
 
 
Generalized stochastic differential equations 
 
Strictly speaking, stochastic theory only applies when transport properties are smooth 
functions in space. LaBolle et al. (2000) presented generalized stochastic differential 
equations (GSDE) for the case of discontinuous transport properties and their 
numerical integration for RWPT. In practical terms this means that, for the case of 
isotropic dispersion and homogeneous porosity, a two-step procedure is used in order 
to account for the local solute mass balance. First, the velocity at the particles position, 
shifted only by the dispersive part, is evaluated. Then, this velocity is used to calculate 
the final particle step. The local fluid mass balance is fulfilled by using linear 
interpolation as in the other two approaches.  
 
 
NUMERICAL ANALYSIS 
 
The approaches were numerically implemented into the random walk transport model 
RW3D (Fernàndez-Garcia et al., 2005). Solute transport in the following synthetic 
cases is conservative, two-dimensional and pore-scale dispersion is assumed to be 
isotropic (α = 0.01 m). A constant displacement scheme is used as it is computationally 
more efficient than the constant time step scheme (Wen & Gómez-Hernández, 1996). 
MODFLOW (McDonald & Harbaugh, 1988) was used to solve the flow equation and 
to compute the cell-interface velocities. 

Two heterogeneous hydraulic conductivity fields with a discretization of Δx = Δy = 
0.3 m and a total domain size of x = 60 m and y = 21 m were generated using stochastic 
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simulation techniques as shown in Fig. 1. Whereas for model A a Gaussian random 
function is used, model B was created using indicator simulation. Spatial correlation is 
isotropic for model A (λx = λy = 1.2 m) and strongly anisotropic for model B (λx = 20 m, 
λy = 1.2 m). The spatial correlation for both fields is modelled using an exponential 
semivariogram and the indicator simulation was performed using a mosaic model with 
nine thresholds. The variance is increased from σ2

lnK = 0.5 to 4 in order to simulate 
increasing heterogeneity and the mean hydraulic conductivity is kept constant at lnK = 
–6.908 m s-1. In this article, the interpolation method, using the Itô or the Stratonovich 
interpretation of a stochastic integral, and the GSDE method in highly heterogeneous 
aquifers are evaluated. 

The third order TVD (ULTIMATE) scheme, included in the MT3DMS model 
(Zheng & Wang, 1999), was used for comparison with these methods. This scheme 
offers an attractive alternative to the traditional mixed Eulerian-Lagrangian schemes 
(e.g. method of characteristics, MOC) due to its mass conservation property and the 
ability of reducing numerical dispersion (Zheng & Wang, 1999; Zheng & Bennett, 
2002). Nevertheless, as the present problem is strongly advection-dominated, the 
domain was refined to a discretization of Δx = Δy = 0.1 m to minimize any possible 
numerical dispersion. One model run for model B with σ2

lnK = 2 was repeated with a 
discretization of Δx = Δy = 0.075 m and the two results obtained with the TVD scheme 
were compared. Neither artificial oscillations nor numercial dispersion were observed. 

The differences between the different numerical schemes are investigated by 
comparing the time-dependence of corresponding solute plume spatial moments. The 
spatial moments are calculated following Tompson & Gelhar (1990).  
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Fig. 1 Models generated using sequential Gaussian simulation (Model A) and 
indicator simulation (Model B) with different spatial correlation. Model dimensions 
are given in metres; hydraulic conductivity is as lnK. 

 
 
RESULTS 
 
All methods performed well for model A, even when presenting an extreme hetero-
geneity of σ2

lnK = 4 (Fig. 2). For model B, all the techniques illustrate good results up 
to a hydraulic conductivity variance of σ2

lnK = 2. Increasing the heterogeneity for this 
model, only the interpolation method in combination with the Itô- or Stratonovich-
Fokker-Planck equation is able to reproduce the average velocity and the macro-
dispersivity correctly (Fig. 3). The GSDE method underestimates the average velocity 
and overestimates the macrodispersivity as depicted in Fig. 3. 

With respect to the numerical implementation, the interpolation method in 
combination with the Itô-Fokker-Planck equation is the easiest method. All other  
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Fig. 2 Average velocity and longitudinal macrodispersivity using model A with  
σ2

lnK = 4 (where XG(t) denotes the location of the centre of mass at time t). 
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Fig. 3 Average velocity and longitudinal macrodispersivity using model B with  
σ2

lnK = 2 (where XG(t) denotes the location of the centre of mass at time t). 
 
 
approaches require either an additional iterative scheme (Stratonovich interpretation), 
or are complex to implement for three-dimensional, heterogeneous systems (reflection 
principle, GSDE). 

Finally, it should be noted that computation times, especially for the strongly 
heterogeneous cases, are significantly lower for the RWPT method than for the TVD 
scheme. Whereas the TVD scheme required from approximately 30 minutes (for 
model A with σ2

lnK = 0.5) to several hours (for model B with σ2
lnK = 4) to solve the 

transport equation, RWPT, using 2000 particles, required approximately 15 minutes, 
clearly demonstrating the computational efficiency. 
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