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Abstract The paper discusses empirical and theoretical evidence on the 
structure of river basins, emphasizing the intertwined form and function of 
such complex adaptive systems. Geomorphic signatures on the structure of 
floods are discussed. It also deals with the emergence and the implications of 
common features in a variety of natural networks, chiefly the scaling 
signatures of chance and necessity in their evolution, appearing in somewhat 
disparate contexts from physics to biology. Hence the claim that a 
comparative study of networks relates to hydrological research and to the 
general theme (flood research) of the Kovacs Colloquium. Of some importance, 
arguably, is the claim that river basins and their floods constitute one of the 
most reliable and fascinating laboratories for the observation of how Nature 
works across a wide range of scales. Specific applications are discussed that 
deal with transport through fractal networks. In passing, a geomorphic/ 
stochastic perspective of large-scale flood studies, and how floods relate to 
pollution loads generated by the transport of matter at basin-scales, are 
considered. 
Key words  basin-scale transport; fractal networks; hydrological response; watershed theory  
 
Recherche géomorphologique des inondations 
Résumé Cet exposé présente les éléments expérimentaux et théoriques 
concernant la structure des basins hydrologiques en insistant sur la forme 
entrelacée et la fonction de tels systèmes complexes et adaptatifs. Des 
signatures géomorphologiques de la structure des inondations seront discutées. 
Cet exposé discute aussi de l’apparition et des implications des traits communs 
que l’on trouve dans une variété de réseaux naturels, particulièrement les 
signatures invariantes d’échelle du hasard et de la nécessité dans leur 
évolution, qui apparaissent dans des contextes quelque peu disparates allant de 
la physique à la biologie. D’où une affirmation qu’une étude comparative des 
réseaux est liée à la recherche hydrologique et au thème général de ce colloque 
Kovacs. Il est peut être d’une certaine importance que l’affirmation proposée 
dans cet exposé que les bassins hydrologiques et leurs inondations constituent 
un des laboratoires les plus fiables et les plus fascinants pour observer 
comment la Nature fonctionne à travers une large gamme d’échelles. Les 
applications spécifiques discutées dans cet exposé traitent du transport à 
travers un réseau fractal—au passage, je vais discuter une perspective 
géomorphologique/stochastique des études d’inondation à grandes échelles,  et 
comment les inondations sont liées aux charges de pollution produites par le 
transport de matière à l’échelle du bassin.  
Mots clefs  transport à l’échelle du bassin; réseau fractal; réponse hydrologique;  
théorie du bassin versant 
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1. INTRODUCTION 
 
The effective management of hydrological systems, including the general architecture 
of systems capable of mitigating all effects of floods and including measures aimed at 
improving the quality of receiving water bodies, can benefit from the use of reliable 
models describing hydrological fluxes and storage terms both in space and time. Note 
that I intentionally include in the general subject of flood studies the class of models 
describing transport processes at the scale of the basin. Several reasons support my 
choice. On one hand, in fact, most pollutant loads are carried by a few intense flood 
events rather than by chronic high concentrations at low stages of flow. This was not 
apparent earlier, as e.g. mitigation measures for nonpoint source pollutions were aimed 
at the treatment of low flows. On the other hand, transport through fractal networks is 
getting great attention from a variety of other fields where landscape heterogeneities 
strongly affect processes like the spreading of populations (Campos et al., 2006) or 
diseases (Méndez et al., 2004). Lastly, theoretical approaches suited to large-scale 
transport domains are still lagging behind, especially if solidly rooted in the stochastic 
framework that seems appropriate for large-scale applications (Rinaldo & Marani, 
1987; Rinaldo et al., 2005). The term geomorphic flood research is thus meant as an 
analogue of catchment theory.   
 Branching river networks are crucial in all this. They are striking examples of 
natural fractal patterns which self-organize, despite great diversities in forcing 
geological, lithological, vegetational, climatic and hydrological factors, into forms 
showing deep similarities of the parts and the whole across several orders of 
magnitude, and recurrent motifs everywhere (Rodriguez-Iturbe & Rinaldo, 1997). 
Interestingly, the drainage network in a river basin shows tree-like structures that 
provide efficient means of transportation for runoff and sediment and show clear 
evidence of fractal behaviour. Our observational capabilities are also noteworthy. 
Accurate data describing the fluvial landscape across scales (covering up to 5 orders of 
magnitude) are extracted from digital terrain maps remotely collected and objectively 
manipulated. Raw data consist of discretized elevation fields, say zi, on a lattice. The 
drainage network is determined assigning to each site i a drainage direction through the 
steepest descent at i, i.e. along iz∇

r
. Multiple flow directions in topographically convex 

sites, and their derived hydrological quantities, are also easily tackled. Many 
geomorphic features are then derived and analysed. To each pixel i  (the unit area on 
the lattice) one can associate a variable that gives the number of pixels draining 
through i , i.e. following the flow directions. In the case of uniform rainfall injection, 
area provides a measure of the flow at point i  allowing one to use these two quantities 
interchangeably. Drainage directions uniquely determine network lengths. Down-
stream lengths Li (i.e. from a site i  to the outlet following the largest topographic 
gradient, i.e. steepest descent) can be computed easily to derive their distributions 
which clearly show the characters of finite-size scaling (Rodriguez-Iturbe & Rinaldo, 
1997). Channelized patterns are now reliably extracted from {zi} fields through the 
exceedence of geomorphic thresholds, and have thus much improved our ability to 
describe objectively natural forms over several orders of magnitude. Large-scale 
observations have allowed thorough comparisons across scales defining fractal river 
basins. It is my belief that the detailed knowledge (automatically acquired and 
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objectively manipulated) of the geometry and the topology of the flow paths within 
river basins is the key player of any current transport model—hence the central role of 
geomorphology, and the title of this paper.   
 General transport models would serve well, however, both research and 
applications within the same framework, given the timeliness of design criteria that 
include directly concepts of probability—much of what flood research is all about, I 
guess. Management objectives require, in fact, models capable of: (a) reproducing 
system functioning as described by observations; and (b) predicting system functioning 
under conditions and during events which have not been observed, possibly generating 
statistical ensembles of events. This must be possible without the burden of making 
unphysical or unrealistic assumptions, like, typically, statistical stationarity of the 
response of ever-changing watersheds. Thus one can hardly overestimate the 
importance of basin-scale models of transport for society at large. Towards that end, 
the formulation of transport by travel time distributions is well suited (Rodriguez-
Iturbe & Valdes, 1979; Gupta et al., 1980; Dagan, 1989; Rinaldo & Rodriguez-Iturbe, 
1996). I shall briefly address here elements of this formulation in a framework 
somewhat broader and more comprehensive than that of the original approach—results 
from transport theories concoct a formulation that applies regardless of whether we 
deal with flow or with transport models at catchment scales (e.g. as in Rinaldo & 
Marani, 1987; Rinaldo et al. 1989, 1991; Destouni & Graham, 1995; Cvetkovic & 
Dagan, 1996; Rinaldo & Rodriguez-Iturbe, 1996; Simic & Destouni, 1999; Gupta & 
Cvetkovic, 2002; Botter & Rinaldo, 2003; Botter et al., 2005). The aim is to use the 
large-scale collection and objective manipulation of geomorphic, hydrological or land-
use data now available, which indeed allow the automated description of the features 
of the geometry and topology of the flow domains—hence the river network, 
principally.   
 Figure 1 illustrates a sample of the variety of network forms that are relevant to 
geomorphic flood studies. A real fluvial network (Fig. 1(a)) of the Dry Tug Fork River 
(California, USA) is suitably extracted from a digital terrain map (Rodriguez-Iturbe & 
Rinaldo, 1997). Notice its clear tree-like structure, usual in the runoff production zone 
of the river basin. Its morphological features (like aggregation and elongation) are 
typical of fluvial patterns and recurrent “modules” appear regardless of the scale of 
total contributing area, such that the parts and the whole are quite similar notwith-
standing local signatures of geological controls, here marked by a fault line clearly 
visible across the landscape. Scheidegger’s directed network (Fig. 1(c)) is constructed 
by a stochastic rule (Scheidegger, 1991); with even probability, a walker chooses 
between right or left forward sites only. The model was devised with reference to 
drainage patterns of an intramontane trench and maps exactly into a model of random 
aggregation with injection or voter models (Takayasu et al., 1991) and also describes 
the time activity of a self-organized critical (Abelian) avalanche (Bak, 1996). Peano’s 
network (Fig. 1(e)) is a deterministic fractal whose main topological and scaling 
features, some involving exact multifractals (Schertzer & Lovejoy, 1989), have been 
solved analytically (Marani et al., 1991; Flammini & Colaiori, 1996; Colaiori et al., 
1997). The basic prefractal is cross seeded in a corner of the square domain that covers 
the cross and its ensuing iterations. All subsequent subdivisions cut in half each branch 
to reproduce the prefractal on four, equal subbasins. Here the process is shown  
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   (c) (d)              (e) 

Fig. 1 Samples of trees where a unique pattern links any inner site to the outlet of the 
network. (a) A real river network, the Dry Tug Fork (California), suitably extracted 
from digital terrain maps; (b) a single-outlet optimal channel network (OCN) selected 
starting from an arbitrary initial condition by an algorithm accepting random changes 
only of lowering the total energy dissipation of the system as a whole – thus incapable 
of reaching the ground state and settling in a local minimum dynamically accessible; 
(c) Scheidegger’s random construct built by choosing with even probability right or 
left in a directed walk; (d) a “hot” network where any arbitrary change randomly 
assigned to an evolving network is accepted provided it maintains a tree-like form;  
(e) Peano’s deterministic construct (from Rinaldo et al., 2006b). 

 
 
at the 11th stage of iteration. Optimal channel networks (OCNs) (Fig. 1(b)) are described 
elsewhere (Rodriguez-Iturbe & Rinaldo, 1997). They hold fractal characteristics that 
are obtained through a specific selection process from which one obtains a rich 
structure of scaling optimal forms that are known to closely conform to the scaling of 
real networks, even in the case of unrealistic geometric boundaries. To design a very 
inefficient tree, we have constructed a non-directed structure constrained to be tree-like 
(Fig. 1(d)) by using a Metropolis algorithm (Rinaldo et al., 2005). This basically 
corresponds to an algorithm that accepts any change attributed sequentially at random 
sites of an evolving spanning network—an existing link is disconnected at a random 

(a)  (b)  
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site and rewired randomly to another nearest neighbour provided the change maintains 
a tree-like structure. Hot networks (Fig. 1(d)), so-called because they correspond to 
high temperatures of a Metropolis scheme where every spanning tree seeded in the 
outlet is equally likely, are thus abstract forms meant to reproduce a rather undirected 
tree. From the comparison of transport features along these geomorphic (or geomorphic-
like) structures, several issues have been highlighted.   
 This paper is organized as follows: An introductory section reviews the kinematics 
and the elements of general transport theory that allow us to blend flow and transport 
of matter for a single transport volume. The ensuing section uses the theoretical results 
obtained for a single transport volume to obtain a formulation valid for arbitrary 
sequences (in series or in parallel) of transport states, distinguishing the effective 
functioning of any geomorphic paths upon the fraction of input rainfall conveyed 
therein. A few examples aimed at clarifying a somewhat convoluted procedure are then 
shown, which are related to the naturally nested structure of control volumes within a 
catchment rather than to unnecessary complications of our models. A section on 
possible extensions of the theory then closes the paper.  
 
 
2. FLOW AND TRANSPORT AT BASIN SCALES 
 
Once net rainfall is suitably partitioned into surface and subsurface pathways—not a 
subject of this paper as any model would do—the flux of the water carrier within 
natural formations is seen as a conservative process where water particles move within 
the control volume towards the outlet without significant variations of their mass. Thus, 
let mw be the (time-independent) water mass transported by a single particle injected at 
time t0 = 0 in the initial position x0. Each trajectory is defined by its Lagrangian 

coordinate ( ) τττ+== ∫ dttt
t

0000 ),(),;()( XvxxXX  where ),( txv  is the point value of 

the velocity vector. The spatial distribution of water concentration in the transport 
volume V  as a result of the injection of a single particle is given by Taylor (1921): 

))((),;,( 00 tmttc ww Xxxx −δ∞  (1) 

where δ is Dirac’s delta distribution and, without loss of generality, we have assumed 
unit porosity within the whole control volume (i.e. wV w mdc =∫ x ). Equation (1) states 

that, in the one-particle one-realization case, volumetric water concentration (water 
mass per unit transport volume) is nonzero only at the site where the particle is 
instantaneously residing (i.e. at its trajectory). Thus uncertainty in the dynamical 
specification of the particle (i.e. the evolution in time and space of the trajectory  
X(t;x0,t0) of the labelled, travelling “water particle”) is reflected in the transport 
process. Owing to the heterogeneity which characterizes transport processes and 
environments at basin scale, the trajectory is seen as a random function. Let therefore 

XX dg )(  be the probability that the particle is found within the infinitesimal volume 
dX located around the position X at time t (notice that the functional dependence 

)(Xg  implies ),( tg x  in terms of cartesian coordinates because of the evolution of the 
trajectory with time). The ensemble average concentration ),( tcw x  is given by the 
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relationship (Taylor, 1921; Dagan, 1989):  

),()()(),( tgmdgmtc www xXXXxx =−δ= ∫
∞

∞−
 (2) 

The distribution ),( tg x  is usually called a displacement probability density function 
(pdf). Important models describing displacement distributions, g, or wc  (from 

equation (2) wcg ∝ ), notably the cases deriving from the Fokker-Planck’s equation, 
are reported in the literature (see, for a summary relevant to hydrology, Rinaldo et al., 
1991; Rinaldo & Rodriguez-Iturbe, 1996).   
 The displacement pdf g(x,t) is determined by the kinematics of the carrier flow, 
and defines the travel time distribution f(t) of the water carrier within the control 
volume. The definition of travel time distribution implies the identification of a 
suitable control section. We thus assume that the time t  at which a particle crosses 
such a control section is unique and, most importantly, that all particles injected in V  
ensuing from x0∈V must transit through it. The probability density of travel times is 
proportional to the instantaneous mass flux at the absorbing barrier of the control 
volume (Dagan, 1989). In fact, water mass in storage within the control volume Mw(t) 
is expressed by: 

)(),()( tTPmdtgmdctM
V wwV ww ≥=== ∫∫ xxx  (3) 

where )( tTP ≥  is the probability that the residence time is larger than current time t . 
Thus, by continuity, one has QIdttdM w −=)(  (where I [MT-1] is the mass water 
input and Qw(t) [MT-1] is the mass flux at the outlet of V ), and therefore, for an 
instantaneous water pulse (i.e. )()( tmtI wδ= ): 

0for)()()( >=
≥

−= ttfm
dt

tTdPmtQ www  (4) 

where f(t) is the probability density function (pdf) of travel times for the water carrier. 
In surface hydrology, when the input is a unit of net rainfall, such a pdf is usually 
termed the instantaneous unit hydrograph (IUH). The equivalence of travel time 
distributions with IUHs was at the origins of the theory of the geomorphic unit 
hydrograph (Rodriguez-Iturbe & Valdes, 1979), i.e. the GIUH.   
 In using the travel time formulation of transport in surface hydrology, two courses 
have been pursued: one course assumes the form of the pdf, and characterizes it by 
some parameters of clear physical meaning, like mean travel times. An example of this 
is the exponential pdfs used to describe travel times of water particles in the original 
approach by Rodriguez-Iturbe & Valdes (1979) to derive the geomorphic unit 
hydrograph. The second course exploits the equivalence of water fluxes and pdfs to 
deduce travel times from the equations of motion. Eulerian, Lagrangian or travel time 
approaches therefore may differ formally although they are derived from the same 
assumptions. A discussion on the relative balance of the merits of the above 
approaches can be found in Dagan (1989).   
 Let us turn to reactive transport of solutes carried by hydrological waters in the 
same framework. A given amount of solute (of mass ms) is injected within the control 
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volume through an instantaneous release of water, and is thus allowed to move within 
the transport volume driven by the hydrological carrier flow and to exchange mass 
with the surrounding environment. The “reactive” character of the transport is 
described by the (spatial and/or temporal) variability of the solute mass associated with 
the water particles moving within the control volume, that is, the function ms = ms(X,t) 
which embeds physical, chemical or biological exchanges with immobile phases in 
some contact with the carrier flow. One-particle, one-realization concentration fields 
resulting from the injection of a single reactive particle are given by the following 
equation:  

( ))();,(),;,( 000 tttmttc ss XxXxx −δ∝  (5) 

The reactive components involved define the instantaneous solute mass ms attached to 
the moving particle without affecting the trajectory X of the particle itself, which is 
determined by the usual kinematic relationship. The mass transfer occurring between 
the carrier and immobile phases (e.g. chemical or physical sorption, ion exchange, 
precipitation) leads in general to variability for m both in time and space. We assume, 
however, that the injection area is much larger than any correlation scale of 
heterogeneous transport properties and/or that the temporal scales relevant for the 
undergoing advective processes are larger than the characteristic times for the reaction 
processes. This suggests (Rinaldo & Marani, 1987; Rinaldo et al., 1989, 2005; Botter 
et al., 2005) that the spatial gradients of mass exchange become negligible and that, 
therefore, the contact times drive mass transfer between phases (i.e. the well-mixed 
approximation). The injection of identical particles labelled by carrier and solute 
masses mw, ms at different initial locations x0 at time t0 produces, at time t > t0, the 
sampling of different trajectories X(t) but yields roughly the same temporal evolution 
of the mass of solute transported ms(t – t0, t0), which thus depends (for a given 
injection time t0) solely on the time available for the reaction processes, t – t0. The 
expected value of the volumetric concentration ),( tcs x  (solute mass for unit 
transport volume) is then given, from equation (3), by the relation (Rinaldo & 
Rodriguez-Iturbe, 1996):  

),(),();,( 0000 ttgtttmttc ss −−= xx  (6) 

where the similarity of structure with respect to passive transport stems from the fact 
that ms is unaffected by ensemble averaging. Thus we obtain a generalization of 
Taylor’s theorem for reactive transport problems. The displacement distribution g 
defines the structure of the carrier residence time distribution within the control 
volume and thus epitomizes the complex chain of events determining the hydrological 
flow. The mass function ms(t – t0, t0) accounts for all sorption/desorption processes 
which determine the temporal variability of the solute mass transported by the moving 
water particles. The decoupling of the reaction component from the transport problem 
is quite expedient because the displacement and the travel time distributions may be 
directly employed.   
 The solute mass instantaneously stored in the water carrier within the transport 
volume V (as a result of a solute injection occurring at t = t0) may be thus expressed by 
the use of equation (6) as:  



Andrea Rinaldo 
 
 

26

)()();,()( 00,00 ttTPtttmdttctM sV ss −≥−== ∫ xx  (7) 

where p(T ≥ t) is the probability that the residence time is larger than the current time t. 
Thus, deriving equation (7) with respect to t, one has:  

)()(),()(
0000 ttTP

dt
dmttftttm

dt
tdM s

s
s −≥+−−−=  (8) 

where the last term of the above equation represents the rate of solute, say R [MT-1], 
transferred from the immobile phase to the water carrier due to the active reaction 
processes. Since for t > t0 by continuity one has dMs/dt = –Qs + R (where Qs [MT-1] is 
the solute flux at the outlet of V), by comparison with equation (8) we obtain: 

00000 for)(),();( ttttftttmttQ ss >−−=  (9) 

which expresses the solute flux at the outlet due to the injection within the control 
volume at t = t0 of an instantaneous water pulse carrying a solute mass ms, which is 
time dependent owing to mass exchange processes.   
 In what follows, it is assumed that the solutes transported by the carrier undergo 
sorption phenomena with other immobile phases in contact with the water flow (e.g. 
soil grains, bed sediment, dead-end zones). The mass transfer between the phases is 
therefore driven by the difference between the solute concentration sorbed in the 
immobile phase and the solute concentration, say C, characterizing the water particles 
moving along the control volume (solute mass for unit water volume) (Van Genuchten, 
1981). The latter may be straightforwardly derived by use of equations (2) and (6) as:  

w

s

w

s

m
tttm

ttc
ttc

tttC ),(
);,(
);,(

),( 00

0

0
00

−
ρ=ρ=−

x
x

 (10) 

where ρ is the (constant) water density [ML-3]. Notice that in equation (10) the capital 
letter C  is employed for the solute concentration of the water particles (solute mass 
per water volume), so as to highlight the difference with respect to the volumetric 
concentration of solute cs (mass per unit transport volume). Notice that at a given time 
t, the water particles injected into the system at the same injection time t0 are all 
marked by the same resident concentration C(t – t0,t0), independently from their 
trajectory. This is, of course, an important assumption which nonetheless seems 
applicable to most cases where rainfall is the driving factor (Botter et al., 2005).   
 Note that it is appropriate to state clearly the mathematical analogies that stem 
from the position τ = t – t0, where τ is the travel time of a single particle within the 
control volume after injection at time t0, thereby the contact time between phases, and t 
is chronological time. Thus, one may express the solute concentration of the water 
carrier as a function of only two of the above timescales (e.g. C = C(τ,t0), or C = C(τ,t), 
see below). Within the above framework, solute mass transported by the water carrier, 
ms, is thus defined by the rate of change of the scalar property C(t – t0,t0) = C(τ,t) 
attached to the mobile phase. Incidentally, when the scalar is simply the density of the 
carrier, i.e. C(t – t0,t0) = const = ρ, the above derivation reduces to the description of 
flow rates. In the general case, instead, the temporal variability of the function C 
(which retains all sorption/desorption processes determining the temporal variability of 
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the mass transported by the moving particles) is related to the active reaction processes 
between the phases. For the sake of simplicity, linear rate-limited kinetics are assumed 
to drive the temporal evolution of the concentration function C(t – t0, t0) (Rinaldo & 
Marani, 1987): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
τ−=

τ∂
τ∂ ),()(),( tC

k
tNktC

D
 (11) 

where N [MM-1] is the concentration in the immobile phase (properly transformed by 
kD [L3M-1], the equivalent of a partition coefficient) and k [T-1] is the overall rate 
coefficient of the reaction kinetics between mobile and immobile phases. Accordingly 
with the well-mixed assumption, the concentration in the immobile phase N  is 
assumed to solely depend on time and not on the position x. The temporal evolution of 
the function N(t) may be thus described on the basis of a global (rather than local) 
mass balance, applicable to each “state” which is physically meaningful to identify. 
This is not the case, for instance, in the other approaches known from the literature 
(Cvetkovic & Dagan, 1994).   
 An important indicator of the validity of the above assumptions comes from an 
application where the carrier flow is forced to be in steady state, which is a particular 
case of the above framework for constant input flow rates (Botter et al., 2005). 
Consider a steady-state flow through a generic heterogeneous medium and assume that 
the underlying Eulerian velocity field is a stationary random vectorial function v(x). 
The ensemble mean of the local velocity v is assumed to be positive (such as a mean 
flow direction is determined) and—without loss of generality—aligned with one axis. 
Under the above assumptions, the transport domain may be thought of as a collection 
of independent and stationary streamlines, which are characterized by different 
residence times owing to the heterogeneity of the transport properties involved. Solute 
particles injected within the flow field, or released from the soil, are simultaneously 
advected by the carrier and affected by sorption–desorption processes with immobile 
phases in contact with the water flow. In this context, a noteworthy simplification of 
the transport problem may be achieved by projecting the transport equation along a 
single streamline and embedding all the heterogeneities of the transport properties 
within a single variable, the travel time τ (for appropriate details the reader is referred 
to the original paper by Cvetkovic & Dagan, 1994). If we assume that linear and 
reversible sorption processes occur between the mobile and the immobile phases, mass 
conservation yields:  

),(),(),(),(),(
21 tNktCktRtC

t
tC

τ+τ−=τ=
τ∂
τ∂

+
∂
τ∂  (12) 

and: 

),(),(),(
21 tNktCk

t
tN

τ−τ=
∂
τ∂  (13) 

where C [ML-3] represents the solute concentration in the mobile phase, N [ML-3] is 
the solute concentration in the immobile phase (mass of solute per unit fluid volume), 
R [ML-3T-1] is the sink/source term due to chemical and/or physical reactions and k1,k2 
[T-1] are the forward and backward reaction coefficients, respectively. It is worth 
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mentioning that τ is the time needed for a particle injected in x0 at t = 0 (i.e. X(0) = x0), 
with X(t) = (X(t),Y(t),Z(t)) (as usual the trajectory of the particle) to reach a control 
plane, perpendicular to the mean flow direction, located at a distance x (measured 
along the mean flow direction) from the injection site (Cvetkovic & Dagan, 1994): 

∫ ξζξηξ
ξ

=τ
x

u
dx

0 ))(),(,(
)(  (14) 

The quantities η and ζ in equation (14) are the transversal displacements of the 
considered particle, i.e. η(x) = Y(τ(x)) and ζ(x) = Z(τ(x)) (for a complete treatment, 
only sketched here, see Cvetkovic & Dagan, 1994, 1996). It should be noted that 
equation (12) is actually fully three dimensional (3-D), since the Lagrangian variable τ 
retains the 3-D structure of the velocity field. Furthermore, in (12) we neglect pore-
scale dispersion; in heterogeneous formations, in fact, pore-scale dispersion may only 
affect the local values of resident concentrations but bears a negligible overall effect on 
global quantities, such as mass fluxes and the spatial/temporal plume moments 
(Dagan, 1989), particularly in the case of reactive solutes (e.g. see the discussion in 
Botter et al., 2005).   
 When considering basin scales, it has been shown that ensemble averaging over 
different injection points x0 embedding source areas larger than the scales character-
istic of heterogeneous properties (thereby typically for particles injected by rainfall 
patterns) smooths out the dependence on the features of the single trajectory and that 
the above framework forced to steady state often gives negligible differences with 
respect to the full Lagrangian framework, and that in practice one has N(t,τ) ≈ N(t) 
(Botter et al., 2005). This leads to the simplified formulation provided by equation 
(11), where the spatial gradients of immobile concentration are neglected. Thus the 
solute mass flux [MT-1] due to an instantaneous injection of a water flux  
J(t) = mw/ρ)δ(t – t0) [L3T-1] may be expressed by the use of equations (9) and (10) as:  

)(),()()(),(),( 000000000 ttftttCttJttftttCmttQ w
s −−Δ=−−

ρ
=  (15) 

where J(t0)Δt0 = mw/ρ is the water volume injected in the system during the time 
interval Δt0. Equation (15) states the equality between the mass response function (i.e. 
the solute release corresponding to a unit water input) and the product between the 
carrier transfer function f (i.e. the travel time distribution for the water flow) and its 
solute concentration C. Flow rates [L3T-1] (constant mw) and mass fluxes [MT-1] 
(variable ms) generated by an arbitrary sequence of rainfall volumes J(t) [L3T-1] (which 
we may treat as clean for τ = 0, i.e. 0),0( ≡tC ) are thus derived, for a single transport 
volume, from equations (4) and (15): 

)()()( 000 0 ttftJdttQ
t

w −= ∫ [L3T-1]  (16) 

and: 

)(),()()( 00000 0 ttftttCtJdttQ
t

w −−= ∫ [MT-1] (17) 

respectively.   
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 In the case of unsteady forcing one may need to distinguish resident concentra-
tions, C(t – t0,t0), from flux concentrations, say CF(t), at the outlet of single transport 
volumes (thereby only a function of current time t): 

)(
)()(

tQ
tQtC

w

sF =  (18) 

CF(t) being the solute concentration at the outlet resulting from the simultaneous 
arrival of water particles which have experienced different travel times and have come 
into contact with different immobile phase concentrations. The distinction between 
resident and flux concentrations for non-steady advection is indeed well known (e.g. 
Rinaldo & Marani, 1987). Flux concentrations are needed, in particular, when 
considering serial transport volumes, as we shall see in the next Section.  
 
 
3. OF GENERALIZED APPLICATIONS 
 
In general, the determination of travel time distributions must be accomplished 
following an analysis of the detailed motion of water particles in space and time over a 
channel network. Indeed a complex catchment entails a nested structure of geomorphic 
states, quite different from one another, where hydrological transport occurs. Typically 
one thinks of hillslopes (where solute generation to hydrological runoff mostly occurs) 
and channel states (where usually routing occurs, though exchanges with hyporheic 
zones or riparian vegetation or biological decays may be significant, especially if travel 
times therein become large) (Rinaldo & Rodriguez-Iturbe, 1996). We thus need to 
define the collection Γ of all individual paths γ∈Γ that a particle may follow up to the 
basin outlet. The collection of connected paths γ = x1,x2,…,xΩ, (where we define Ω as 
the closure of the catchment) consists of the set of all feasible routes to the outlet, that 
is: x1 → x2, → … → xΩ.  
 A different notation emphasizes the geomorphic framework adopted. If Ai,I = N,1  
is the number of overland states whose total area covers the entire catchment (say, we 
neglect the actual surface of channelized patterns), and ci defines any channel link of 
the catchment (N is the total number of links), all the paths are supposed to originate 
within hillslopes i.e. Ai → ci → cΩ, where Ω is the conventional notation for the outlet 
of the basin. The above rules specify the spatial distribution of pathways available for 
hydrological runoff through an arbitrary network of channel and overland regions. The 
travel time spent by a particle along any one of the above paths is composed by the 
sum of the residence times within each of the states actually composing the considered 
path. Nevertheless, the time Tx that a particle spends in state x (x = Ai or x = ci) is a 
random variable which can be described by probability density functions (pdfs) fx(t). 
Obviously, for different states x and y, Tx and Ty can have different pdfs,  fx(t) ≠ fy(t) 
and we assume that Tx and Ty  are statistically independent for x ≠ y. For a path γ∈Γ 
defined by the collection of states kxx ,...1=γ  (where, in turn, x1,….xk ∈(A1,…, AΩ, 
c1,…, cΩ) we define a travel time Tγ through the path γ as: 

kxx TTT ++=γ .....
1

 (19) 
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From the statistical independence of the random variables 
ixT  it follows that the 

derived distribution fγ(t) of the sum of the (independent) residence times 
ixT  is the 

convolution of the individual pdfs:  

kxx fftf *.....*)(
1

=γ  (20) 

where the asterisk ∗  denotes the convolution operator.   
 Travel time distributions f(t) at the outlet of a system whose input mass is 
distributed over the entire domain are obtained by randomization over all possible 
paths (Rodriguez-Iturbe & Valdes, 1979; Gupta et al., 1980): 

∑
Γ∈γ

γγ= )()()( tfptf  (21) 

where γ is the arbitrary path from source to outlet constituted of states kxx ,...1 , fγ, is 
the path travel time distribution as given by equation 20, p(γ) is the path probability, 
i.e. Σγ∈Γ p(γ) = 1, defining the relative proportion of particles in γ.   
 We now define (and generalize) different types of path probabilities. In the 
simplest case, the path probabilities may be simply defined as p(γ) = Aγ/A, where Aγ is 
the contributing area draining into the first channel state of any given path γ. In such a 
case Σγ∈Γ Aγ = A, where A is the total area drained by the channel network, and the path 
probability is solely determined by geomorphology. The above time-independent 
determination of the path probabilities is tantamount to assuming uniform rainfall in 
space, and this severely constrains the size of the catchment to be modelled, which is 
related to the basic scale of spatial heterogeneity of rainfall patterns.   
 Where rainfall patterns, say j(x,t), are distributed in space and time, the path 
probabilities would be simply dictated by the relative fraction of rainfall, i.e.:  

)(
),(

),(

),(
),(

tJ
tJ

dtj

dtj
tp

A

A γ
==γ

∫

∫
γ

xx

xx
 (22) 

(where ∫=γ
yA

dtjdtdttJ xx ),(),(  is the total quantity of rainfall entering the system in 

(t – dt,t)) through the path γ, and J(t)dt the total rainfall injected in the same period 
over the entire watershed), which allows one to embed any rainfall pattern in space and 
time routing them through the catchment at each time interval. This capability is 
central to the innovation contained in our model, and constitutes a new and relevant 
extension of traditional GIUH approaches.   
 Whether a pattern in space and time of j(x,t) derives from the characters of rainfall 
or of runoff production will be seen elsewhere. Notice that we may derive arbitrary 
rainfall fields either by kriging of point rainfall measurements, or by assuming 
stochastic patterns derived from theoretical models. Hence one might derive the 
rainfall-weighted path probabilities in the general case by simple quadratures. A 
reliable operational procedure consists of isolating through suitable drainage directions 
on digital terrain maps a spanning set of sub-basins of size considerably smaller than 
the macroscales of intense rainfall patterns, thereby defining spanning sets of landing 
areas γ where one can assume locally constant rainfall intensity J(γ,t). This procedure 
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is tantamount to a coarse-graining of the original rainfall patterns from the pixel size to 
that of a collection of thousands of them, with much improved computational 
efficiency at no cost of predictive loss. Moreover, any spatially distributed model of 
runoff production would result in distributions of input j(x,t) more markedly hetero-
geneous in space.   
 Moreover, whether or not one needs to modify travel times depending on the 
intensity of the hydrological events (e.g. geomorphoclimatically) depends on the 
modes of hydrological transport, say when dominated by storage rather than kinematic 
effects, but the basic formal machinery remains unaffected. Many papers have 
addressed the characterization of travel times and the related hydrological response. 
We will not review them here. Suffice here to say that the description of hillslope 
transport is of great importance (e.g. Rinaldo et al., 1995b; Robinson et al., 1995; 
Botter & Rinaldo, 2003). In fact, hillslope residence times are responsible not only for 
key lags (and rather complex mechanisms like preferential pathways to runoff) in the 
overall routing, but are also important to the understanding of derived transport 
processes, chiefly solute generation and transport to runoff waters. The above matter, 
jointly with the physical problem of characterizing well where channels begin, still 
needs to be resolved satisfactorily.   
 In the framework previously depicted, flow rates are obtained by propagating 
spatially distributed, time-dependent net rainfall impulses by the use of linear invariant 
hydrological responses. The basic formulation of the geomorphic theory of the hydro-
logical response is thus given by the following, commonly adopted convolution integral: 

)(),()()( 000
0

0 ttftptJdttQ
t

w −γ= γ
Γ∈γ
∑∫  (23) 

In the occurrence of spatially uniform, time varying net rainfall intensity J(t) one has: 

)()()()()()( 00
0

000
0

0 ttftJdtttfptJdttQ
tt

w −=−γ= ∫∑∫ γ
Γ∈γ

 (24) 

because f(t) = )()( tfp γ
Γ∈γ
∑ γ , and we recover the usual GIUH relationship which is 

employed in several practical cases. It should be stressed that the general formulation 
of equation (23) uses rainfall patterns in space and time both for determining the path 
probabilities p(γt) and for filtering the net contribution J(t). 
 The convolution integrals up to equations (23) and (24) may be solved exactly for 
a number of cases (Rinaldo et al., 1991) where the dynamical parameters determining 
the propagation of the flood wave are assumed to be uniform. Alternatively, we may 
allow arbitrary variations in celerity and hydrodynamic dispersion, and thus numerical 
convolutions are often in order. In such cases, arbitrary travel time distributions may 
be used depending on the hydraulics and suitable numerical techniques (typically 
employing integral transforms) are used to accurately convolute in time. A strong 
control over the numerical machinery is obviously provided by continuity, given that 

γ∀≡ττ∫
∞

γ 1)(
0

df .   
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 We note that the key identification of the paths γ∈Γ may be done directly from 
digital terrain maps, hence exploiting our capabilities of extracting useful geomorphic 
information from them and chiefly the extent of the channelized portion of the basin 
(see e.g. Rodriguez-Iturbe & Rinaldo, 1997). This is why these approaches constitute 
the geomorphic flood studies. 
 From the results of the previous Section, solute mass discharge at the basin scale is 
given in the following form:  

)(),(),()()( 00000
0

0 ttftttCtptJdttQ
t

w −−γ= γγ
Γ∈γ
∑∫  (25) 

where Cγ is a “path” resident concentration. In the case of water flow one simply has 
Cγ = ρ, the density of water. In this case Qs(t)/ρ becomes a flow rate, Qw [L3T-1], and 
equations (23) and (24) are straightforward to recover.  
 The particular formulation of a mass-response function (MRF) approach depends 
on the number and the arrangement of the reacting states. A (relatively) simple case is 
that of a path (say γ = x1 → … →xΩ, where xΩ denotes, as usual, the terminal reach of 
the catchment), where the state x1 generates solute mass to the mobile phase (hence 
one has a mobile and immobile concentrations in x1 denoted by )(),,(

11
tNtC xx τ , and 

all other states (from x2 to xΩ) route the transported matter without further exchanges. 
In this case one has in equation (25): 

Ω
=γγ xxx fftftftC *.....**)0,()()0,(

21
 (26)  

 In the general case where x1 is a “generation” state (wherein solutes are transferred 
from the immobile to the mobile phase) and x2,x3,…,xΩ are reactive states where the 
solutes transported by the carrier may be retarded owing to chemical processes occur-
ring with other immobile phases (e.g. bed sediment or dead zones that define chemical, 
biological or physical reactions), the mass response function may be expressed as: 

ΩΩ
λλ=γγ xxxxxx fftCftftC *.....**)0,()()0,(

2211
 (27) 

where ki
ix ,2.( =λ ) represents the gain/loss function within each reactive state forced 

by a non-null input flux concentration of solute 0)(, ≠tC inF
xi

:  
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00
00 tC
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i

i
i

−
=−λ  (28) 

Obviously when downstream states route the matter without sorption, 1≡λ
ix . The 

notation 
ixC  and 

ixλ  should not surprise, as we argued that for each state where gain/loss 
processes occur one needs to carry out a global mass balance to determine the instantan-
eous fraction of matter stored in immobile phases )(tN

ix . We argue that equation (27) is 
the general form of Mass Response Function (MRF) which, in different forms that reduce 
to particular cases of (27), has been known for some time (e.g. Rinaldo & Marani, 1987).   
 On this basis alone one needs to weigh carefully the spatial and temporal scales 
relevant to a mathematical model of transport at catchment scales. All possible com-
binations of states generating, losing or simply routing solutes may thus be explored, 
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thus straightforwardly extending the geomorphic theory of the hydrological response 
to solute transport.   
 The linkage of travel times with the global basin-scale contact times between 
phases controlling mass exchanges provides a leap forward in our operational 
capabilities of describing large-scale transport processes. Indeed a complex catchment 
entails a nested structure of geomorphic states where the spatial pathways of any rain-
driven particle moving through the network of channel and overland regions define the 
control volumes for which one needs to carry out mass balances and compute travel 
and lifetime distributions.  

We shall discuss a few examples with the scope of clarifying the structure of mass 
response functions. The examples are kept to a minimum of geomorphic and 
hydrological complexity to avoid clouding the main issue. Rainfall is assumed constant 
in space, i.e. p(γ,t) = p(γ). Figure 2 shows the chosen setup, composed of five source 
areas and five channels. Overall, the topological order is 2=Ω . 
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Fig. 2 (a) Sample of a relatively simple geomorphic structure of a river basin and 
notation for the theoretical model. The basic elements of the geomorphic approach for 
basin-scale transport are provided. Notice that the set Γ of all possible paths to the 
outlet defined by the geomorphic structure is made up by 10 states, five overland 
states and five channels (e.g. transitions to overland areas Ai to their outlet channel ci 
and then to ensuing transitions (ci → ck → … →c5) towards the closure—the endpoint 
of channel c5). Notice the treatment of the i-th source area Ai as a well-mixed reactor. 
Here we assume that all sources areas A1 to A5 act as generators of solutes to the 
mobile phase. (b) The set of independent paths available for hydrological runoff is 
enumerated and shown (after Rinaldo et al., 2006a). 

(b) 

(a) 
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The complete set Γ of paths to the outlet (see Fig. 2) is the following:  

5311 cccA →→→  

5322 cccA →→→  

533 ccA →→  

544 ccA →→  

55 cA →  

The states where paths originate are labelled by an area Ai, so that the total catchment 
area A obeys the relation A = A1 + … A5  and path probabilities are defined by p(1) = 
A1/A; … ; p(5) = A5/A, thereby assuming that the rainfall is spatially uniform—this is 
tantamount to assuming that the watershed “width” is smaller than the correlation scale 
of rainfall events. Under the circumstances shown in Fig. 2, equation (21) and (26) 
apply with:  

55544

53353225311
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 (29) 

(where we have neglected for the sake of simplicity the probability for a particle to 
land directly on a channel state).   
 Figure 3(a) shows the individual and compounded travel time distributions for the 
path γ1 defined by the transitions: A1→ c1→ c3 → c5. Also shown (Fig. 3(b)) is a 
comparison of the path, fγ(t), and the basin, f(t), travel time distributions needed for the 
general definition of fluxes. The comparison shows the obvious blending of different 
arrivals that reflect the geomorphic complexity of the pathways to the outlet.   
 Mass response functions are easily determined when parallel generation states 
occur. If we assume that every hillslope Ai acts as a generator of solute matter to runoff 
(a usual assumption in nonpoint source pollution studies), we have, for the water pulse 
injected at t0 = 0 (i.e. τ = 0):    

55554445333
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which defines the mass-response function for the basin shown in Fig. 2. Note that for a 
unit pulse of rainfall one has )()0,()()( tftCptQs ∑γ γγγ=  and the flux concentration 

is CF(t) = Qs/Qw, while for compound inputs of rainfall J(t) one has to solve equation (25). 
 Sample computations are shown in Fig. 4, where results for an instantaneous unit 
pulse of effective rainfall J(t) = δ(t) are reported in a and b. Figure 4(a) shows the 
connected behaviour of the resident mobile, C, and immobile, N, concentrations in 
state A1 obtained by solving equation (11) with a given initial concentration N(0) and 
initially zero concentration in mobile phase C(0,0) = 0. Note that the particular choice 
 

(30)
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Fig. 3 (a) Example of individual travel time distributions along the path A1 → …c5.  
(b) Travel time distribution fγ(t) obtained by convolution of the individual pdfs, and 
catchment travel time distribution f (t) (after Rinaldo et al., 2006a). 

 
 
of numerical value of N(0) (here about 5.5 kg ha-1) is immaterial. The flux concen-
tration at the outlet is obtained by solving five mass balance equations of the type (11) 
for the five generating states Ai to determine five different path concentrations Cγ(τ,to), 
and then posing Qs(t) = Σγp(γ)Cγ(t,0)fγ(t) and CF(t) = Qs/Qw, which is the final result 
shown in Fig. 4(b). Notice the difference in the timescales with respect to the travel 
time f(t) shown in Fig. 2 due to chromatographic effects induced by the reaction 
kinetics. Figure 4(c), instead, describes a case where a sequence of rainfall inputs  
J(t) (shown in the upper plot) drives a complex chain of events, thus requiring  
more complex computations. In the lower plot of Fig. 4(c) we show the behaviour of 
N(t) in one of the generating states, evidencing the effect of solute leaching due to the 
sequence of rainfall impulses. One may also notice the reduced rates of solute 
generation to runoff for the late-coming pulses (most of the mass had been leached 
previously), which reflect the lack of translational invariance postulated by the 
dependence of resident concentrations onto two different timescales, i.e. C = C(τ,t0). 
The plot reported in Fig. 4(d) has been obtained by solving equation (25) with the 
sequence of J(t) reported in Fig. 4(c), in the case of parallel generation and transport of 
solutes.  
 

(a) 

(b) 
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Fig. 4 (a) Resident concentration )0,(

1
tCA  and its corresponding immobile phase 

concentration )(
1

tN A  (expressed in kg ha-1) vs t  for an instantaneous pulse; (b) flux 

concentration at the outlet of the basin )(
5

tC F
c ; (c) temporal evolution of the rainfall 

depths (upper plot) and corresponding immobile phase concentration )(
1

tN A  for a 
sequence of intermittent rainfall pulses, a case typical of transport in the hydrological 
runoff. Also shown, in (d), is the corresponding flux concentration at the outlet of the 
catchment, )(

5
tC F

c  (after Rinaldo et al., 2006a). 
 

 
 A second example, involving serial transport, is more complex. If we assume that 
mass loss/gain processes are significant in serial states (two hillslopes and a stream 
channel, see Fig. 5), one may specifically assume that: 
(i) the overland states A1 and A4 are generation states, e.g. agricultural areas where 

fertilization occurs; 
(ii) the stream channel c5 is a relatively vegetated, high-residence time channel reach 

where reaction processes matter. In this case the travel time distribution is the 
same as for the case above, whereas the MRF for the water pulse injected at t0 = 0  
(τ = t):  
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 where the resident concentrations in states that follow generation (the channel 5 ) 
are properly normalized by the inflowing flux concentrations. Note that only the 
contributions of “source” states explicitly appear in the MRF, whereas large dilutions 

(a) 

(b) (d) 

(c) 
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Fig. 5 (a) Geomorphic structure of the test catchment: here we assume that only 
sources areas A1 and A4 act as generators of solutes to the mobile phase. Moreover, we 
assume that mass transfer processes also occur in state c5 owing to its travel times and 
nature. Reactive states (A1, A4 and c5) are isolated in (b) (after Rinaldo et al., 2006a). 

 
 

determined by all the states generating clean runoff are reflected by lower flux 
concentration along the stream network. Needless to say, the serial arrangement is 
considerably more involved computationally.   

 Every possible combination is thus tackled. Figure 6 shows an example of compoun-
ded application of the model above to the case of nitrate transport in the hydrological 
response of the basin shown in Fig. 5 (Rinaldo et al., 2006b). Although by necessity 
several details are missing (they are reported elsewhere, see caption to Fig. 6), I chose 
to show it because the capability of the model to reproduce complex hydrological 
events and the associated transport features seems notable. Thus theoretical consistency 
and practical applicability are claimed to characterize the geomorphic approach.   
 
 
4. TRANSPORT ON FRACTAL NETWORKS 
 
Transport on fractal networks is a relatively old enterprise. In the context of flood 
studies, perhaps relevant is the exact nature of certain solutions to a Wiener process in 
the framework of Section 2 (Rinaldo et al., 1991). Of particular interest therein is the 
derivation of the concept of geomorphic dispersion, i.e. the rate of the variance of the 
arrival time distribution that can be directly attributed to the heterogeneity of the flow 
paths from any source to the outlet—properly, the geomorphic contribution. Also 
interesting is the proof (Rinaldo et al., 1991) that the contribution of other processes 

(b) 

(a) 
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Fig. 6 Sample of extended computations for the basin shown in Fig. 5. While the 
necessary details are described elsewhere (Rinaldo et al., 2005, 2006a)—indeed an 
involved technological machinery is needed whose description is clearly outside the 
scope of this paper—we must note that the observational data were collected by a 
downstream receiving stream where fluctuations (even reversal) in the flows were 
induced by tidal forcings at the outlet. The tools described here thus produce the flux 
boundary condition for flow and transport to a numerical code carrying out a mass and 
momentum balance, thus partitioning hydrological and hydrodynamic modelling 
domains. Indeed in the case shown here the partition was also physical owing to a 
small chute at the end of channel c5 where critical depths are steadily maintained. 
Nevertheless, it should be noted that quite complex and distinct patterns of 
fluctuations for flow and transport can be described by the tools introduced in Sections 
2 and 3 (after Botter et al., 2005). 

 
 
(like, e.g. the cumulative effect of hydrodynamic dispersion within individual channel 
links, or the overall effects of reaction processes) to the variance of the arrivals is 
additive. Moving from that result, it was observed that geomorphic dispersion tends to 
dominate the hydrological response.   
 Later this powerful result was smoothed by the observation that, quite unexpec-
tedly, hillslope processes tend to produce signatures on the travel time distribution, and 
thus arguably the hydrological response, that last more than expected (Rinaldo et al., 
1995a,b; Robinson et al., 1995). Indeed one would think that as the mean travel time 
through states external to the channelized portion of the catchment becomes much 
smaller than the mean overall travel time, hillslope effects would tend to become 
progressively negligible. This is not true for moments higher than the first for a  
wide range of sizes and geomorphologies. Typically, studies on transport through 

(a) 

(b) 
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Scheidegger, Peano and random networks have addressed the above issues exactly 
(Marani et al., 1991; Takayasu et al., 1991; Flammini & Colaiori, 1996; Colaiori et al., 
1997). Let me briefly mention, for example, that the exact mapping of the width 
function of Peano’s curve into a Besicovitch binomial multiplicative process (Marani 
et al., 1991) sheds light on a variety of fractal and multifractal results.   
 More interesting for the scope of this Kovacs Lecture is perhaps the recent interest 
in transport through fractal networks for modelling migration fronts, with a specific 
application to colonization of the United States during the 19th century (Campos et al., 
2006). The main tenet there is that landscape heterogeneities should have strongly 
affected such process, as the need for water forced the colonizers to follow the routes 
provided by river networks to settle their cities. Indeed it is well known that the US 
transition westwards was not characterized by the regularly patterned pathways 
predicted by classic homogeneous models, but rather tailored to the structure of the 
great river basins. The model employed in the study (Campos et al., 2006) was a 
reaction-diffusion model needed to produce the creation of a front whose speed of 
propagation is a concept making sense. Thus in this model population fronts spread 
onto new regions and population density saturates behind the front.   
 The parameters here reduce to two: the speed of the front, which has been 
“measured” through historic demographic records, and the parameter of the logistic 
growth that dictates how rapidly population saturates behind the front. Figure 7 shows 
that almost any model of network geometry and topology does a job much better than 
 
 

 
Fig. 7 A plot of computational results (redrawn from Campos et al., 2006) on the 
speed of propagation of a front developed by a general reaction–diffusion process 
applied to the migration of population in the 19th century United States. To produce 
an analogue, Campos et al. (2006) have assumed that jump distances covered by 
settlers were derived from archive and demographic distributions of the distances 
covered by colonizers from their birthplace to the place where they had landed 25 
years after. Distances were taken only in the E–W direction. The fraction of people 
that after 25 years still remained in their birthplace was likewise estimated and used. 
Here we show the observational plot of speed of front propagation vs the growth 
parameter of the model. The continuous line is the isotropic, classic Fisher’s model; 
the dotted line represents observational points; circles represent the solution computed 
for Peano’s and optimal networks (Fig. 1) of different order. 
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any classic homogeneous model, thus supporting the claim of the authors. So, for 
instance, details of the generation of the Peano basin do not really matter, and optimal 
networks explain the observed phenomena better than anything else. In any case, 
geometric constraints imposed by the network involve strong corrections over the 
speed of the fronts, and the classical isotropic propagation clearly overestimates the 
observed speed of the migrating fronts. Thus geomorphic constraints must have played 
a decisive role in regulating human migrations—heterogeneities substantially reduce 
propagation rates.   
 My guess is that we shall soon see more on this, in particular for the study of 
hydrochory, i.e. the spreading of species along corridors.  
 
 
5. CONCLUSIONS 
 
In this paper a review has been attempted of outstanding issues relevant to geomorphic 
flood research, including:   
(1) a unified formulation of transport by travel time distributions that encompasses 

both flow and transport while using fully geometric and topological information 
derived from geomorphology;   

(2) an overview of possible schemes for application of such a general scheme, 
typically distinguishing geomorphic transport states arranged in series and/or in 
parallel;   

(3) a survey of issues concerning transport through fractal networks where I believe 
action will be seen, in the near future, in a few fields ranging from population 
biology to ecology.   
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