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Abstract The purpose of this preliminary study is to model mudflow move-
ment in an idealized dam-break configuration. One-dimensional motion of a 
shallow mud layer over a rigid inclined bed is considered. The resulting 
shallow water equations are solved by finite volumes using the HLL scheme. 
A Bingham fluid model is chosen to describe the mudflow rheology. The 
simulations are validated by comparison with flume experiments. Unsteady 
mudflow movement is found to be reasonably well captured by the model. In 
addition, a decoupled algorithm is also employed in the present paper to 
compute the aggradation and degradation of bed-level elevation for Newtonian 
fluid by using the Manning-Strickler formula and Exner’s relationship. 
Key words  dam-break flow; finite volume method; HLL scheme; mudflow 

 
 
INTRODUCTION 
 
The Chichi Earthquake on 21 September 1999 caused more than a dozen landslide 
dams to form across Taiwan streams, temporarily impounding large volumes of water 
(Chen, 1999). Once formed, these natural dams were highly exposed to catastrophic 
failure. Partial or complete failure can lead to severe flooding downstream, and 
possibly trigger further debris slides or mudflows. To understand the dam formation 
process and evaluate the potential consequences of subsequent failure, it is important 
to be able to model the dynamics of mudflows and their interactions with water 
currents. In this paper we attempt to develop a numerical model for simulating dam-
break flows, mudflows, and aggradation and degradation of channel by using a finite 
volume method with the Godunov-type scheme. 
 
 
NUMERICAL SCHEME 
 
Governing equations 
 
The Saint Venant equations are used to describe unsteady one-dimensional (1-D) open-
channel flow. Continuity and momentum balance are respectively written (Abbott, 
1979; Chaudhry, 1993):  
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where h is the depth of flow or mudflow above the rigid bed; q = hu is the unit width 
discharge; u is the mean velocity in the longitudinal flow direction. Letting zb denote 
the bed elevation above a reference datum, the slope S0 can be written: 

0S
x
zb −=
∂
∂

  (3) 

The friction slope Sf can be also expressed with a relationship established for uniform 
flow, by using the Manning-Strickler formula as follows: 

310

22

h
nqS f =  (4) 

where n is the Manning coefficient, recalling that for a very wide channel the hydraulic 
radius is equal to the flow depth.  
 Equation (4) can only be used in the flow of clear water or a Newtonian fluid, i.e. 
the sediment concentration is low. However, at high sediment concentrations the 
mixture behaves as a non-Newtonian fluid such as a hyperconcentrated flow, mud flow 
or debris flow. The rheology of hyperconcentrated flows, mud and debris flows is 
frequently described using the Bingham model. Concerning the bottom friction of a 
Bingham fluid, Pastor et al. (2004) presented the shear stress τb at the bottom as related 
to the modulus of the depth averaged velocity u by: 
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where τy  is the yield stress, μ is the fluid viscosity, and τy/τb  should lie in the interval 
[0, 1]. Therefore, we can utilize equation (5) to compute the friction slope Sf of mud 
flow or debris flow if its rheology can be regarded as a Bingham fluid by τb = ρcghSf, 
in which ρc  is the density of mud. 
 To deal with regions where the mud layer is at rest, a condition for incipient 
motion must be provided. Following previous studies (Mei & Yuhi, 2001; Huang & 
Garcia, 1997), we assume that motion occurs wherever the gravitational pull and 
pressure gradient are sufficient to overcome the yield stress: 

yc x
hgh τ>⎟
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⎜
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∂
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−θρ cossin  (6) 

and where θ  is the inclined angle of slope.  
 
 
Hyperbolic term 
 
In this study, the above shallow water equations are solved numerically using a finite 
volume approach, well suited for transient problems such as dam-break flows. We use 
an operator-splitting approach (see e.g. Toro, 1999) to separately treat the hyperbolic 
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and source components. For both these operators, we adapt the procedure outlined by 
Harten et al. (1983) and Fraccarollo et al. (2003) for the computation of geomorphic 
dam-break waves. In the hyperbolic operator, we used the HLL scheme to deal with 
the partial differential equations, and an implicit backward Euler scheme to treat the 
source term. 
 
 
HLL scheme 
 
The HLL scheme of hyperbolic operator adopted in the present work is an extension of 
the HLL scheme proposed by Harten et al. (1983), widely used for shallow flows. 
Whereas the original HLL scheme applies to equations in full conservation form, the 
momentum equation feature non-conservative product associated with pressure along 
sloping bed. This term is treated following the approach proposed by Fraccarollo et al. 
(2003). Hence, we use the LHLL scheme (Fraccarollo et al., 2003) to discretize the 

momentum equation, which associates with the non-conservative product 
x
z

gh b

∂
∂

. The 

source term associated with friction along the bed is treated further in the next section.  
 
 
Source term 
 
Consider now the source term operator. Using the Manning-Strickler formula to 
specify the friction slope Sf for the computation of clear water, the equation for the 
momentum source term can be written: 
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Using an implicit backward Euler scheme, equation (7) is discretized as:  
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Using the first component of the source operator, we have 0=
∂
∂

t
h  hence t
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Thus, one can solve equation (8) for the unit width discharge of clear water at the next 
time step. 
 Similarly, using the Bingham model to specify the friction slope of mud flow or 

debris flow by 
gh

S
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f ρ

τ
= , the equation for the momentum source term can be written 

as: 
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i uhq Δ+Δ+ = , and using equation (5) to substitute for 
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the velocity at the next time step in the discretizing expression of equation (9) by an 
implicit backward Euler scheme, we derive: 
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To obtain the solution of equation (10) directly is very difficult, so our strategy is to 
deal with it by using the Newton-Raphson method twice. In the first step, we can solve 
the shear stress τb from equation (5) using the results of a hyperbolic operator as the 
initial condition. Then the solution τb  can be employed as the initial condition to solve 
equation (10) by the Newton-Raphson method for the second iteration. 
 To advance the solution at each time step, the hyperbolic operator is first applied 
to obtain a partial update. These results are then used as initial conditions for the 
source operator, yielding the complete update. Since the hyperbolic update is explicit, 
stability of the scheme is subject to the CFL condition on the time step:  

( )cu
xt
+

Δ
=Δ

max
CFL  (11) 

where c is the wave celerity and u the velocity at any given grid point, and CFL is the 
Courant number. The value CFL should be smaller than 1 and it is found to be 
satisfactory in our case. 
 
 

Aggradation and degradation 
 

A decoupled algorithm has been used in the present paper to compute the aggradation 
and degradation of bed-level elevation for Newtonian fluid. The calculations start at time 
t = 0, when the bed-level elevations are known. The hydraulic parameters are calculated 
by solving the Saint Venant equations for water flow without considering sediment 
transport. Then the bed-load transport rate is calculated for all the elements. The balance 
of the sediments entering and leaving is subsequently calculated for all elements to find 
the volume of deposition or erosion. These volumes are then translated into bed-level 
modifications at the interfaces of elements by Exner’s relationship: 

( ) 01 =
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∂

+
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−
x
q

t
z

p sb  (12) 

where p is porosity of the bed layer, and qs is volume sediment transport rate per unit 
width. This concludes the computational cycle for the time t = 0. The time is then 
advanced by tΔ , and a new calculation concerning Saint Vennant equations is carried 
out with the new bed profile (Graf, 1998). 
 In this numerical model, the sediment transport rate is calculated by the bed-load 
transport formulae documented in Graf (1998), and an empirical power function of the 
flow velocity in which the empirical constants are specified by the user. To avoid too 
large a variation of bed level, the program compares the maximum relative variation 

hzbΔ  with the maximum tolerated value as specified by the user, and prevents the 
relative variation from exceeding the tolerated value at the end of each time step. 
Moreover, it is often preferable to calculate bzΔ  from equation (12) and split bzΔ  as: 
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( ) ( )( ) 2121 1 +− Δα−+Δα=Δ ibibb zzz  (13) 

with 10 <α<  as a weighting factor between backward and forward differences 
(Julien, 2002). 
 
 
RESULTS AND DISCUSSION 
 
Dam-break experiment in prismatic channel 
 
To test the numerical model for clear water, we compared the simulation with the 
laboratory experiments of the US Army Engineer Waterways Experiment Station 
(USACE, 1960) in Fig. 1. The experiments were conducted in a rectangular channel  
122 m long and 1.22 m wide, with a bottom slope of 0.005 and Manning’s coefficient of 
0.009. The dam was placed at the middle of the channel, giving the initial water depth 
upstream of the dam H1 = 0.305 m and downstream of the dam H2 = 0.0 m. In this 
simulation, the uniform grid spacing xΔ  is 1.0 m and the Courant number CFL = 0.9. 
The agreement between the prediction and the experimental results is satisfactory. The 
results also indicate that the finite volume method can capture the surges well and the 
 
 

99.3

99.4

99.5

99.6

99.7

99.8

99.9

100.0

100.1

0 20 40 60 80 100 120

Distance (m)

El
ev

at
io

n 
(m

)

Bed

HLL

Measured

   

0.00

0.02

0.04

0.06

0.08

0.10

0 20 40 60 80 100 12

Time (sec)

D
ep

th
 (m

)

HLL

Measured

 

0.00

0.02

0.04

0.06

0.08

0.10

0 20 40 60 80 100 120

Time (sec)

D
ep

th
 (m

)

HLL

Measured

 
Fig. 1 Comparison with WES experiment: (a) water surface profile along the channel 
at t = 10 sec; (b) time evolution of water depth at x = 70.1 m; (c) time evolution of 
water depth at x = 85.4 m. (Source of measured data: USACE, 1960) 
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numerical model has a good ability to deal with the “contact points” at locations where 
the depth reaches zero depth. 
 
 
Dam-break experiment for hyper-concentrated flows 
 
Using this numerical model to compute the dam-break surge for hyper-concentrated 
flows, the comparison between the prediction and experimental results is shown in  
Fig. 2. Komatina & Dordevic (2004) performed a series of dam-break flow experiments 
in a 4.5 m long, 0.15 m wide glass-walled laboratory flume. The dam-break type of flow 
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Fig. 2 Comparison of calculated and measured hyperconcentrated flow depth profiles: 
(a) t = 0.2 sec; (a) t = 0.4 sec; (a) t = 0.6 sec; (a) t = 0.8 sec; (a) t = 1 sec. (Source of 
measured data: Komatina & Dordevic, 2004) 
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was initiated by releasing mixtures from a 2 m long, 0.155 m wide reservoir. The 
rheological properties of mixtures are regarded as a Bingham fluid in the present paper 
and their parameters are shown as follows: density ρc = 1601 kg m-3, yield stress τy = 
102 Pa, and fluid viscosity μ = 32 Pa s. The results imply that the present numerical 
model not only computes dam-break flows for clear water but also simulates 
mudflows. 
 
 
Knickpoint migration 
 
A knickpoint is defined as an abrupt change in the longitudinal bottom profile of a 
channel (Chaudhry, 1993). The experimental data obtained from the paper proposed by 
Bhallamudi & Chaudhry (1991) was compared with the computed results (Fig. 3). The 
experimental channel is a 15.8 m long and 1.2 m wide flume and the slope of the channel 
was approximately equal to 0.00125. A fall of approximately 0.0305 m was provided at 
a distance of 10.8 m from the upstream end to simulate the knickpoint. The computa-
tional region was divided into 52 reaches ( 3048.0=Δx m). The initial and boundary 
conditions were included as q0 = 0.0028 m2 s-1 and h0 = 0.0305 m. In addition, the 
median size of sand is assumed 0.67 mm and the Meyer-Peter bedload formula is chosen 
to compute the sediment discharge. The present model successfully simulated the 
knickpoint by combining the Saint Venant equations with Exner’s relationship. 
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Fig. 3 Bed level variation due to knickpoint migration. (Source of measured data: 
Bhallamudi & Chaudhry, 1991). 

 
 
CONCLUSIONS 
 
This paper proposes a one-dimensional numerical model with the finite volume 
method based on the shallow water equations. A key feature of the model is the use of 
an operator-splitting method to divide the governing equations into hyperbolic and 
source terms. This approach provides an easy method for modelling Newtonian and 



Comparison of numerical and experimental study of dam-break induced mudflow 

 
 

 

555

non-Newtonian fluids, respectively. In addition, a decoupled algorithm is also 
employed to compute the aggradation and degradation of bed-level elevation for a 
Newtonian fluid by using the Manning-Strickler formula and Exner’s relationship. The 
comparisons between the predictions and experimental results are all satisfactory.  
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