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Abstract This paper evaluates two contrasting approaches to parameter 
estimation for ungauged basins using the US National Weather Service’s 
SACramento Soil Moisture Accounting (SAC-SMA) model. An automatic 
calibration scheme (Multi-Step Automatic Calibration Scheme, MACS) 
provides deterministic parameter estimates using a three-step, multiple 
objective approach. The MACS estimates are then transferred to similar or 
“sister” watersheds for basins in the French MOPEX data set. Physically-
based parameter estimates are also developed for the same basins based on the 
a priori approach of Koren et al. (2000). In general, the two methods, the 
transfer and the a priori approaches, show similar overall performance. 
Parameter estimates appear more consistent between basins using the a priori 
approach, but statistically the regionalized MACS parameters and the a priori 
parameters show very similar model performance for the three basins 
investigated in this study. Model simulated hydrographs are also very similar 
between the two methods, with both methods tending to underpredict most 
events (peak and volume) but matching the shape and pattern of flow well. 
However, both methods have worse performance than a calibrated model for 
the same basin, indicating the possibility for further refinement and adjustment 
of the techniques presented here.  
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INTRODUCTION 
 
A priority of MOPEX is to improve the estimation of parameters, primarily through 
the development of a priori methods. The goal of this paper is to compare two fairly 
recent, but diverse, methods for estimating parameters for ungauged basins. One 
method is based on the transfer of parameters from calibrated, neighboring catchments 
using an automated procedure for estimation in the gauged basins, and the second 
method is based on the estimation of a priori estimates from relationships developed 
between soil physics and model parameters. This study uses the conceptual rainfall–
runoff SACramento Soil Moisture Accounting (SAC-SMA) model used by the 
National Weather Service (NWS) for forecasting river flows in the United States. We 
test the a priori and regionalization methods on three basins in France. This work is 
directly tied to the goals of MOPEX, which are to advance the state of knowledge of 
parameter estimation techniques and provide guidance on procedures for improvement 
of a priori estimates of parameters for land surface and hydrological models.  
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METHODS 
 
The two methods used here were developed for the case in which streamflow observa-
tions are not available for calibration of the SAC-SMA model (i.e. the basins under 
analysis are ungauged). These parameter estimation methods include: (1) a direct 
estimate of parameters for the ungauged basin using theoretical understanding of 
(small-scale) soil physics proposed by Koren et al., (2000); and (2) transfer of para-
meters calibrated on neighboring basins to the ungauged basin. A third possible 
approach of parameter regionalization using statistical regression equations (e.g. 
Wagener et al., 2004) was not tested here due to the small number of basins available. 
The second method (sister approach) involved calibrating the model to streamflow 
observations in each basin using an automated procedure (MACS; Hogue et al., 2000, 
2006), and applying the mean parameter values of the calibrated estimates to the 
ungauged basin. Ideally, and in our future work, one could use physically-derived 
relationships (i.e. watershed size, precipitation/evaporation (PE) ratio, mean flow 
ratios, etc.) to adjust the parameters before application to the ungauged basin. The 
sister approach assumes that there will be some regional basins with observational data 
for calibration, and that geographically proximal basins behave in a similar manner in 
terms of their hydrological response. The advantage of the a priori method lies in the 
“physical” relationship of the derived parameters to actual watershed properties. In 
principle, the a priori approach should result in more consistent parameter distribu-
tions within (distributed models) and between watersheds. A disadvantage of this 
method, however, is the difficulty of finding reliable and accurate watershed 
information (soils, land use, etc.). Other challenges include unexplored problems of 
scale between the watershed data and model parameters. 
 
 
Study sites 
 
Table 1 lists the watershed identifiers along with their soil and/or watershed 
characteristics for our three study basins. Each basin was treated as ungauged and 
parameters were derived using (1) a priori estimates, and (2) a mean parameter set 
from two regional sister-basins. Each of the methods, along with the model, is outlined 
in more detail below. 
 
Table 1 Study basins with identifier, size, land cover and soil type.  

Basin ID Size (km2) Land cover USDA soil texture 
class 

J3024010 43 Agricultural (50%) 
Arable land (40%) 
Other (10%) 

4 (100%) 

V6035010 150 Forest (70%) 
Scrub and herbaceous 
(30%) 

6 (80%) 
4 (20%) 

Y5615030 279 Forest (40%) 
Natural grassland (36%) 
Urban (10%) 
Other (14%) 

4 (55%) 
6 (45%) 



Modelling ungauged basins with the Sacramento model 

 
 

161

Model 
 
The SAC-SMA is a conceptual model using a two-layer soil moisture system to 
continuously account for storage and flow through the soil layers. The upper layer 
represents surface soil regimes and interception storage, while the lower layer 
represents deeper soil layers and groundwater storage (Brazil & Hudlow, 1981). Each 
layer consists of fast components (free water), driven mostly by gravitational forces, 
and slow components (tension water), driven by evapotranspiration and diffusion. The 
SAC-SMA, with a total of 16 parameters (Table 2), is a saturation excess model; when 
precipitation amounts exceed percolation and interflow capacities, upper zone storage 
will overflow and overland flow will occur. Inputs to the model are Mean Areal 
Precipitation and Potential Evapotranspiration (PET). An evapotranspiration demand 
curve (or adjustment curve) is used for estimating the potential evaporation for the 
watershed. Output from the model, channel inflow, is routed through a unit hydrograph 
for forecasting basins in the USA.  
 The model was run at the hourly time-step for each of the study basins. Channel 
routing was performed using a series of Nash-cascade linear reservoirs. A Monte Carlo 
based sensitivity analysis was used to determine the optimum number of reservoirs; for 
the basins under study five reservoirs (each using the same recession coefficient, 
k_route) was found to be optimal. In the MACS procedure, k_route was optimized 
along with 13 SAC-SMA parameters. In the a priori method, k_route was estimated by 
averaging the MACS obtained value for the other two basins. 
 
 
A priori parameter estimation  
 
Koren et al. (2000) present equations (hereafter called Koren equations) for deriving a 
priori estimates for the 11 major SAC-SMA parameters from soil texture, hydrological  
 
 
Table 2 List of parameters within the SAC-SMA model and their description.  
SAC-SMA Parameter description
UZTWM  Upper zone tension water max. storage (mm) 
UZFWM  Upper zone free water max. storage (mm) 
LZTWM  Lower zone tension water max. storage (mm) 
LZFPM Lower zone free water primary max. storage (mm) 
LZFSM Lower zone free water suppl. max. storage (mm) 
UZK Upper zone free water lateral depletion rate (day-1) 
LZPK Lower zone prim. free water depletion rate (day-1) 
LZSK Lower zone suppl. free water depletion rate (day-1) 
ADIMP Additional impervious area (fraction) 
PCTIM Impervious fraction of the watershed (fraction)
ZPERC Maximum percolation rate (dimensionless)
REXP Exponent of the perco. equation (dimensionless) 
PFREE % of water percolating directly to lower zone free water storage  
RIVA Riparian vegetation (fraction)
SIDE  Ratio of deep recharge to channel baseflow (fraction) 
RESERV % of lower zone free water not transferable to lower zone tension water 
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soil group, soil depth and vegetation. The physical basis of the Koren equations and 
their derivation are given by Duan et al. (2001) and Koren et al. (2003), therefore only 
a brief overview is given here. The Koren equations assume that the SAC-SMA 
tension water storages are related to “available” soil water and that the free water 
storages are related to “gravitational” soil water. Available and gravitational soil water 
can be derived from soil properties (i.e. saturated moisture content, field capacity, and 
wilting point). Following Koren et al. (2003), regression equations derived by Cosby 
et al. (1984) were used together with Campbell’s matric water potential equation to 
determine soil hydraulic properties from the USDA soil texture class information.  
 Soil texture classes in the French MOPEX Data set (available in GIS), were map-
ped to the USDA soil texture classes (Table 1). A soil depth of 2.5 m was assumed. 
Soil hydraulic properties for each basin were defined as the area average of soil 
property values of soil texture polygons in a basin. The combined thickness of the 
upper and lower layers was assumed to be equal to the soil profile depth. The thickness 
of the upper layer was estimated using a concept of initial rain abstraction based on the 
Curve Number (CN) classification system developed by The Natural Resources 
Conservation Service (NRCS) (McCuen, 1982). Following Koren et al. (2003), it was 
assumed that under the average soil moisture conditions stipulated by NRCS, the upper 
layer tension water storage is full and the free water storage is empty. In this case 
initial rain abstraction should satisfy the upper layer free water capacity (Koren et al. 
2003). The upper layer thickness can then be calculated based on a CN for the soil 
profile. NRCS soil hydrological group was assumed to be “B” for all soils in the study 
basins. Information on land cover was available through the CORINE land cover 
project (http://reports.eea.eu.int/COR0-part1/en) launched by the Commission of the 
European Communities. For each soil texture class polygon, a dominant land use was 
assigned and the corresponding CN was estimated. For each basin an average CN was 
calculated as the area weighted average of the CNs in a specific basin.  
 Under these assumptions the Koren equations were used (see Koren et al., 2003) to 
estimate the SAC-SMA storages (UZTWM, UZFWM, LZTWM, LSFSM, LZFPM) 
and runoff depletion rates (UZK, LZPK, LZSK). The impervious fraction (PCTIM) of 
the watersheds was estimated from the percent of watershed area with land cover types 
of urban and bare rocks. One of the major limitations of the a priori methods is the 
scale difference between the soil hydraulic properties (point measurements) and model 
parameters (representative of a spatially heterogeneous model grid area of several 
kilometres). This limitation is being investigated in ongoing research and is not a focus 
of the current study.  
 
 
Automated parameter estimation 
 
MACS is a departure from previously developed single-step, single-criterion automatic 
calibration techniques and is based on a progressive evaluation of objective function 
values throughout the optimization procedure. The procedure uses the Shuffle 
Complex Evolution-University of Arizona (SCE-UA) algorithm developed by Duan et 
al. (1992, 1993). The method has been tested in a wide variety of hydro-climatic 
regimes in the USA and has been shown to produce model simulations as good as, or 

http://reports.eea.eu.int/COR0-part1/en
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better in some circumstances, to traditional manual calibration techniques. Details are 
presented in Hogue et al., (2000, 2006); and therefore only a brief overview is given 
here. 
 In step one of MACS, 13 of the parameters of the SAC-SMA and the linear 
reservoir parameter (routing parameter) are selected and optimized using the LOG 
criterion (see below). This first run places strong weighting on the low-flow portions 
of the hydrograph and gives good estimates of the lower zone parameters.  

2
,, )( tQobstQsim LOGLOGLOG −=∑                       

where Qsim,t = simulated flows, and  Qobs,t = observed flows at time step t. 
 The second step of MACS emphasizes the estimation of parameters that influence 
higher flow events. Lower zone parameters estimated in the first step are held constant, 
and a second optimization is run using the RMSE function using the upper zone 
parameters and routing parameter:  
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 Step three is run using the LOG function to fine-tune the parameters which affect 
the lower zone processes (upper zone parameters from step two are held constant).  
 The MACS procedure was run for each basin to find a set of “calibrated” 
parameters for the SAC-SMA. A total of 14 parameters were estimated: 13 SAC-SMA 
and one routing parameter (RIVA, SIDE and RSERV are set to book values). A split-
sample approach was undertaken with an initial period used for calibration and a 
separate evaluation period run with the calibrated parameters to assess calibration 
adequacy. Calibrated parameters from each of the two neighbouring basins were then 
averaged to find parameters for the third basin, assumed to be ungauged. In this study 
we had the benefit of comparing this “sister” parameter set with a parameter set 
calibrated specifically to the basin (theoretically our ungauged basin), along with the 
parameter set determined via the a priori method.  
 
 
RESULTS 
 
Three parameter sets were compared for each study basin, including a priori 
estimation, parameters calibrated specifically to the basin (MACS), and parameters 
estimated using the sister approach (mean of two neighboring basins). Figure 1 shows 
a normalized plot of the three parameter sets for each of the three basins (J302, V603 
and Y561). In general, a larger variability is seen between the study basins for the 
MACS parameters (parameters specifically calibrated to each basin). There is slightly 
better consistency between basins with the a priori method. Intuitively this makes 
sense. The basin specific calibration would tend to pick up nuances and differences in 
flow regimes between basins and adjust parameters accordingly. As each of the basins 
have fairly similar soil types (all have type 6 and two have type 4), the a priori 
estimates should have some similarity and the estimated values reflect this. The mean 
values transferred to each basin (sister approach) lie somewhere in between these two 
extremes (slightly more consistent between basins than the MACS, but not as 
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consistent as the a priori values). Also of interest, there is much better consistency 
between all three approaches in the lower zone parameters indicating similar baseflow 
patterns while the parameters controlling surface flow (UZTWM through REXP) show 
more variability between methods.  
 Statistics for the model simulations are presented in Figs 2 and 3. Statistical results 
from the calibration and evaluation period simulations for each study basin are shown 
in Fig. 2. Four statistics are presented: Root Mean Squared Error (RMSE), square root 
RMSE (SQRT RMSE), Nash-Sutcliffe Efficiency (NSE) and percent bias (%Bias). 
The MACS calibration tends to outperform the a priori during the calibration period, 
showing better statistics in most cases except for a slightly lower NSE for V603.  
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Fig. 1 Comparison of parameters from the a priori method, mean (or sister approach) 
and parameters calibrated at the specific basin (MACS) for each of the study basins: 
(a) J302, (b) V603, and (c) Y561.  
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Fig. 2 Comparison of statistics for calibration and evaluation period for each study 
basin with MACS and a priori estimation methods (root mean square error (RMSE), 
square root RMSE (SQRT RMSE), Nash-Sutcliffe efficiency (NSE), and percent bias 
(%BIAS). 

 
 

 
Fig. 3 Comparison of statistics for the three basin as “ungauged” using a priori and 
sister approach (MACS regionalized parameters). Same statistics as in Fig. 2.  
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Fig. 4 Model simulations for basin Y561 as: (a) gauged basin (calibration period), and 
(b) ungauged basin with only a priori and regionalized parameters.  

wever, the MACS performance declines somewhat during the evaluation 
owing more similarity to the a priori performance and even slightly worse 

603 basin (NSE and %Bias). Figure 3 presents the same set of statistics for 
s treated as ungauged. Interestingly, performance is very similar between the 
ods. A priori estimates tend to have a negative %Bias for all basins, while the 
d parameters show a positive percent bias only for the V603 basin. The a 
thod does slightly better in the NSE statistic for two of the basins (J302 and 
ile the MACS has a much better NSE in the V603 basin.  

xample of model simulations for basin Y561 (our largest basin) is shown in 
graphs presented in Fig. 4. Two simulations are shown against observed 

 the calibration period (i.e. gauged basin) in Fig. 4(a) (a priori, and MACS 
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calibration) and the same period is shown in Fig. 4(b) with the basin treated as 
ungauged (showing observed, a priori and MACS regionalized parameters). In the 
gauged case, simulations from both methods, MACS and a priori, tend to fit the 
pattern fairly well. The a priori underestimates the first large event around time-step 
11 200 but does better catching the peaks in the remaining period. The MACS catches 
most of the peaks very well and also matches the recessions and volume better than the 
a priori. In the ungauged case of the basin (Fig. 4(b)), both methods (a priori and 
transferred parameters) miss the same first large event (around time-step 11 200). Both 
methods do better in the remaining time period, however the regionalized parameters 
drastically overpredict two of the large events (around time-steps 12 200 and 12 500). 
Also, neither method matches the recessions during most of the simulations. In the 
case of the a priori method, this is possibly due to the lack of deep soil property 
information (i.e. groundwater).  
 
 
SUMMARY AND CONCLUSIONS 
 
In summary, it is observed (and is consistent with intuitive reasoning) that better model 
performance is obtained when the model is specifically calibrated to a basin with 
observational data. However, the goal of this paper was to evaluate and compare 
methods for estimating parameters when streamflow data are not available, and for 
further insight, to compare these methods to the ideal case of having calibration data. 
Interestingly, both the a priori and sister approach show similar performance for the 
case of the ungauged basins in our study. The simple method of taking the mean of 
calibrated parameters from two neighboring basins with observational data and directly 
applying these estimates within the ungauged basin model, showed surprisingly good 
results. The performance (statistics and hydrograph visualization) was nearly identical 
to the a priori estimates for two of the basins. However, this is not to say that both 
methods are ideal in their present form. Both have poorer statistics (and poorer 
hydrograph fit) than if observational data were available, indicating the need for 
improvement in both methods. Some of the issues to be overcome include the scaling 
of the point-scale soil physics to the watershed scale and the accuracy of watershed-
scale soil surveys when using a priori methods. The sister approach could be improved 
by development of relationships to scale or relating calibrated parameters from basins 
with observational data to ungauged basins. We continue our work in both of these 
research areas and plan to provide more insight on these topics in future publications.  
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