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Abstract Approaches to ungauged basin modelling typically use observable 
physical characteristics of watersheds (e.g. soil data) to directly infer hydro-
logical model parameters, or they use regionalization methods based on 
parsimonious hydrological models. A different approach to streamflow 
prediction in ungauged basins is presented here where, instead of model 
parameters, the model independent hydrological response behaviour is 
estimated in the form of streamflow indices, and then regionalized with 
respect to physical characteristics of watersheds. Therefore, the approach uses 
a data driven regionalization method (under uncertainty) rather than the 
common hydrological model driven regionalization method. Ensemble 
predictions in ungauged basins can then be constrained by limits on acceptable 
hydrological model behaviour. This study utilizes data from 30 watersheds in 
the UK. Initial results show that the predictive uncertainty of the model can be 
reduced considerably through this new approach. 
Key words  ensemble predictions; hydrograph indices; prediction in ungauged basins; 
predictive uncertainty; regionalization; streamflow characteristics; watershed response 

 
 
INTRODUCTION 
 
Rainfall–runoff models are standard tools for hydrological analysis. One major limitation 
of currently available models is the need for adjustment of the model parameters using 
observed watershed response data to obtain reliable predictions (e.g. Sivapalan et al., 
2003; Wagener et al., 2004). The problem is accentuated further when it comes to 
prediction in ungauged basins, where data for parameter estimation via calibration are not 
available. Two common approaches to overcome this problem in ungauged situations are: 
(a) the use of physically based models, and (b) the regionalization of model parameters 
using physical characteristics of watersheds. The introduction of physically based models 
was based on the hope that their parameters would be equivalent (or at least strongly 
related) to directly observable properties. However, differences in scale, over-
parameterization and model structural error, have prevented this objective from (so far) 
being achieved (Beven, 1989). In the regionalization approach, a (typically parsimonious) 
hydrological model structure is selected, and calibrated to observable watershed response 
for a large number of gauged watersheds. Regression equations are then developed 
between the model parameters and physical characteristics of watersheds. This approach 
also suffers from model identification difficulties, model structure errors, and difficulties 
in finding an appropriate calibration strategy that appropriately considers the physical 
meaning of the model parameters (Wagener & Wheater, 2005).  
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 The objective of the research reported here is to achieve a continuing reduction in 
predictive uncertainty, while maintaining reliable predictions, leading to an increased 
understanding of watershed function (Wagener et al., 2004). In this study we introduce 
a new approach for improving predictions in ungauged basins that regionalizes model 
independent dynamic hydrological response characteristics (or indices) to physical 
characteristics of watersheds while considering uncertainty. The approach is applicable 
to any model (whether lumped or distributed) that can be run within a Monte Carlo 
framework, in contrast with other published approaches that can only be applied using 
relatively simple (identifiable) models (Wagener & Wheater, 2005). Initial results, 
using data from 30 watersheds in the UK, are presented here. Two of the watersheds 
were used for an independent evaluation of the approach. 
 
 
REGIONALIZATION OF HYDROLOGICAL RESPONSE BEHAVIOUR 
 
Dynamic response characteristics or response behaviour indices of a watershed can be 
derived from precipitation, evapotranspiration (or temperature) and streamflow time 
series of the watershed; examples include common descriptors of hydrograph shape such 
as runoff ratios and times to peak flow, etc. While indicators of this type are commonly 
used by the ecological community for the evaluation of flow regimes (e.g. Olden & Poff, 
2003), they have only recently been (re)introduced in the context of hydrological model 
calibration (e.g. Yu & Yang, 2000; Shamir et al., 2004). Other examples of such indices 
include runoff ratios, rising and falling limb densities, mean flow, exceedence of flow 
percentiles, etc. (e.g. Olden & Poff, 2003; Shamir et al., 2004).  
 Our work extends these ideas by capitalizing on the information content inherent 
in such summary descriptors of watershed response, and by relating them to observ-
able physical characteristics of the watersheds by means of regressive relationships. 
The idea of regionalizing such indices stems from the empirical observation that the 
amount of uncertainty involved in regionalizing hydrological model parameters can be 
large, particularly since it is difficult to account for the effects of model structural error 
during model calibration (Wagener & Wheater, 2005). Since the watershed response 
characteristics are not model-specific, uncertainties and confounding influences that 
might arise from the process of model identification are eliminated (or at least 
significantly reduced). Once regionalized, the behavioural information summarized by 
the response characteristics can be used as constraints on the model predictions, and 
facilitate, for example, a separation into behavioural and non-behavioural model sets 
using a binary classification approach. Therefore, regionalization in the context of this 
paper involves the development of regression relationships between watershed 
response characteristics and observable physical characteristics of watersheds.  
 
 
REGIONALIZATION CASE STUDY 
 
Watershed data 
 
This study uses a set of 30 small to medium sized watersheds located throughout the 
UK (Fig. 1), covering a wide range of soil types, topography and land uses. Most of 



Maitreya Yadav et al. 

 
 

222 

the watersheds have natural flow within 10% at their 95 flow percentile. Data for the 
selected watersheds was acquired from the UK National River Flow Archive 
(http://www.nwl.ac.uk/ih/nrfa). The precipitation and streamflow time series was taken 
from “Predictions in Ungauged Basins (PUB)—UK data downloads” at 
http://www.nwl.ac.uk/ih/nrfa. Temperature data was obtained from The British 
Atmospheric Data Centre (http://badc.nerc.ac.uk/home/index.html). Potential evapo-
transpiration was calculated from temperature data using Hargreaves equation 
(Maidment, 1993). Eleven consecutive years (1980–1990) of data were available for 
29 watersheds.  
 
 

 
Fig. 1 Map of UK showing the location of watersheds used in this study. The square 
and diamond show the validation watersheds. 

 
 
 The time period used for the analysis was from 1 January 1983–31 December 
1990; the average monthly values of rainfall, streamflow and potential 
evapotranspiration are plotted in Fig. 2(a–c). A normalized flow duration curve 
showing cumulative frequency of normalized flow values is also shown (Fig. 2(d)). 
The flows are normalized by the mean flow values to facilitate comparison. A steep 
slope in the flow duration curve indicates flashiness of the streamflow response to 
rainfall inputs whereas a flatter curve indicates a relatively damped response. It also 
represents the storage characteristics of the watersheds. Figure 2(d) shows the diversity 
in watersheds with respect to their hydrological response. 
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plot shows that most of the watersheds tend to have small area, small mean flow, small 
ten- and ninety-five percentile flow exceedence values. The two watersheds to be 
treated as “ungauged” in the study are shown by the continuous and dotted black lines 
and have very different characteristics from each other.  
 
 
METHOD 
 
The physical characteristics used in this study were BFIHOST and DPSBAR. 
BFIHOST (–) is the long-term average fraction of flow that occurs as baseflow—
regionalized for the UK—and DPSBAR (m km-1) is an index of watershed steepness 
(Boorman et al., 1995). BFIHOST is estimated from a regression equation where 
BFIHOST is the independent variable and the HOST classifications (combining soils 
and geological information in the Hydrology Of Soil Types) are the dependent 
variables. The equation takes the form: 

29292211 *...** HOSTaHOSTaHOSTaBFIHOST +++=  (1) 

where HOST1…HOST29 are the proportions of each of the HOST classes, and a1…a29 
are the regression coefficients (Boorman et al., 1995).  
 Only two response characteristics were used in this study, runoff ratio and slope of 
the FDC. Runoff ratio is the ratio of mean annual streamflow, normalized by 
watershed area, to mean annual precipitation. The slope of the FDC was calculated by 
taking the part of curve between the 33% and 66% flow exceedence values of 
streamflow normalized by their means. Linear regression equations between individual 
response characteristics and physical characteristics for the 28 UK watersheds were 
developed based on an equation of the following form (Kottegoda & Rosso, 1997): 

ε+β+⋅⋅⋅+β+β+β= −− 1122110 pp xxxY  (2) 

where Y is the response characteristic of interest, x1, x2,…,xp-1 are p–1 physical charac-
teristics with p regression coefficients (β0, β1, … , βp-1) and ε is an error term. Figure 4 
shows the regression relationships between BFIHOST and FDC slope (Fig. 4(a)), and 
DPSBAR vs runoff ratio (Fig. 4(b)) under uncertainty. The coefficients of determina-
tion (R2) were 0.69 and 0.58, respectively. The regression includes the estimation of 
prediction and confidence intervals; the confidence interval is a measure of the 
certainty (or uncertainty) of predicting the true (expected) value of the variable while 
the prediction interval is a measure of the certainty of predicting some future (possible) 
value of the variable. Since the uncertainty in prediction intervals includes the 
uncertainty in the regression parameters (β0, β1, …, βp-1) and any new measurement 
(Y), this interval is wider than the confidence interval, which considers uncertainty in 
regression parameters only, while the measurements are assumed to be random 
variables. Figure 4 also shows the watersheds sorted by drainage area (black 
corresponds to the smallest area and white corresponds to the largest area). The Roden 
River at Rodington, shown in square markers (dotted line in Fig. 3), and the 
Tillingbourne River at Shalford, shown in diamond markers (solid black in Fig. 3) are 
the two watersheds not used for developing the regression equations. These two 
watersheds were chosen intentionally to test the strength of the approach such that one 
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Fig. 5 Lumped 5-parameter model structure. ET and PP are potential evapotranspira-
tion and precipitation respectively (mm). OV1 and OV2 are model simulated effective 
rainfall components (mm). Xi are states of individual buckets of the routing model. 
QQ is model simulated streamflow (mm). XHUZ and XCUZ are soil moisture 
accounting tank state contents (mm). 

 
 
Table 1 Description of model parameters. 

Parameter Description Unit Min Max 
HUZ Maximum storage capacity of watershed mm 1 300 
b Index describing spatial soil moisture distribution – 0 2 
α Flow distribution coefficient – 0 1 
Kq Residence time of quick flow reservoir s-1 0 1 
Ks Residence time of slow flow reservoir s-1 0 1 
 
 
 For selection of parameter sets giving acceptable simulations, those having 
response indices (runoff ratio or FDC slope) that lie within the confidence and 
prediction limits were considered behavioural, i.e. acceptable representation of the 
watershed. The method was first applied separately for each of the regression 
equations individually and then using the combination of both. The maximum and 
minimum simulated flows generated by the behavioural parameter sets (i.e. lying 
within the confidence and prediction intervals) were determined for each time step, and 
used to form the predictive ranges for the simulations.  
 
 
RESULTS 
 
The method described above was tested using the two “verification” watersheds as 
stated before. For reasons of brevity, only the results from the Roden River at 
Rodington (dotted line in Fig. 3, square in Fig. 4) are presented in detail here. The 
results obtained by using only one regression equation (runoff ratio vs DPSBAR) are 
shown in Fig. 6(a)–(c). The confidence and prediction intervals derived from the 
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regression analysis have clearly constrained the parameter space in terms of the 
performance evaluation criterion used. Figure 6(c) shows the maximum and minimum 
simulated flows for these intervals and for the complete range of simulations. The  
50-day period before the dashed vertical line was used as a model warm-up period. 
The observed streamflow is seen to lie fully inside the prediction intervals after the 
warm-up period. The number of behavioural simulations when flow is constrained by 
the prediction limits of the runoff ratio was 5764 (58%), and the corresponding number 
was 1857 (19%) for flow constrained by confidence limits of the runoff ratio.  
 The number of behavioural simulations decreased further when the constraints 
imposed by both regression equations were applied simultaneously (see Fig. 7(c)) 
resulting in a further narrowing of the confidence and prediction bands (compare with 
Fig. 6(c)). Again, the observed flow and best simulations lie within the predicted 
range. The confidence and prediction limits for this case are shown in Fig. 7(a) and (b). 
When the flow was constrained by the wider ranges (prediction limits) of both 
response characteristics the number of behavioural simulations was 1114 (11%), 
reducing to only 42 (0.4%) when the flow was constrained by the narrower confidence 
limits.  
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SCUSSION AND CONCLUSIONS 

is paper presents an approach to reduce the uncertainty on predictions in unga
ins through the regionalization of watershed characteristics using a framewor
perly exploits the “uncertainty” information contained in the regionaliz
ression relationships. The initial results presented here illustrate the efficienc
lity of the approach in providing suitably constrained model-based hydrolo
dictions. More thorough testing will include the use of a larger set of inform
ices and alternative hydrological models. Further, results with more stati
ustness can be obtained by a bootstrapping-type approach in which water
hin the data set are treated in turn as ungauged. These results will be reported i
rse. As always, we invite discussion and correspondence on this and related to
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