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Abstract This paper deals with an alternative to the classical regionalization 
approach used to address the problem of ungauged basins with rainfall–runoff 
models. We chose a new, more practical orientation, which consists of making 
the most of a few discharge measurements. Indeed, it is not unrealistic to 
obtain such measurements by sending a gauging team to the spot where a 
hydrological prediction is needed. In this paper we aim to identify the 
parameters of a daily lumped rainfall–runoff model, GR4J, and we look for a 
strategy to calibrate its parameters using a few streamflow measurements, 
which are combined with a priori knowledge of the parameters. Results show 
this approach to be much more efficient than classical regionalization studies, 
as soon as about thirty measurements can be made, at random, during a period 
of three to five years. 
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INTRODUCTION 
 
All problems posed to the hydrologist require the representation of the natural system 
by a model. Without a model, nothing can be said, computed or predicted. The type of 
model mostly needed by hydrologists is of the rainfall–runoff type. The most versatile 
type of rainfall–runoff model is the lumped model. Such a model has to be calibrated 
using rainfall–runoff data to obtain its parameters. When no data are available, i.e. 
when the studied watershed is ungauged, hydrologists are at pains to identify 
appropriate parameter values. The conventional approach consists in generalizing for a 
whole region regression relationships established for many gauged catchments 
monitored in that region. However, several studies have shown that regressions are not 
really effective when addressing the problem at the scale of a country (Lee et al., 
2005). Merz & Blöschl (2004) and Parajka et al. (2005) developed alternatives based 
on spatial proximity. 
 Working with a very parsimonious model (just four free parameters) we found that 
we were unable to understand how basic characteristics, such as the catchment area or 
the aridity index (ratio of the mean annual evapotranspiration to the mean annual 
precipitation) could influence the values taken by the model parameters. Thus, we 
chose a new avenue of research which aims at making the most of a few discharge 
measurements. We assume that we are looking for the parameters of a daily lumped 
rainfall–runoff model and that one day of measurements allows one to know the daily 
flow on that day.  
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 The paper is organized as follows: (a) the GR4J model to be applied on an 
ungauged catchment is presented; (b) the data that have been used in this research to 
gain some statistical knowledge of GR4J parameters and to test the methods developed 
for ungauged catchments are described; (c) the method suitable when very few meas-
urements are available is presented; and (d) the results and a conclusion are given. 
 
 
THE GR4J MODEL 
 
The GR4J model, which we will use throughout this paper, is described in detail by 
Edijatno et al. (1999) and Perrin et al. (2003) and we refer readers to the latter article 
for a complete description of the model. GR4J has four parameters to be calibrated. It 
is composed of a soil-moisture accounting procedure (parameter X1 in mm), a transfer 
function combining a routing reservoir (parameter X2 in mm) and a unit hydrograph 
(parameter X3 in days), and a gain-loss function (parameter X4 in mm). In order to 
make the calibration more efficient, it is carried out with transformed values of these 
parameters such that transformed parameters, noted xi, belong to the interval ]–10,10[. 
 The transformations applied to the four parameters of the GR4J model during the 
calibration process are: 
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 Based on the large sample of catchments on which GR4J has been calibrated, we 
have gained a sound knowledge of the prior distribution of the four parameters. Mean 
values and standard deviations of the transformed parameters are shown in Table 1. 
 
 
Table 1 First two moments of the transformed GR4J parameters (from a sample of 1111 catchments). 

Parameter Mean value Standard deviation 
X1 6.2 1.1 
X2 3.9 1.5 
X3 –6.1 3.7 
X4 –0.1 1.7 
 
 
 As a first approach towards using GR4J on ungauged catchments, we tried to 
explain the transformed parameters using three catchment features: the catchment area 
(A, km2), the mean daily potential evapotranspiration (E, mm) and the probability of 
having a daily precipitation larger than 0.1 mm (W). The explanatory relationships 
found are: 

( ) ( ) ( )WEAx log1.0log05.0log001.03.61 +++=  (1) 
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( ) ( ) ( )WEA log5.0log7.0log1.03.5x 2 +−−=  (2) 

( ) ( ) ( )WES log5.0log4.0log4.07.8x 3 +++−=  (3) 

( ) ( ) ( )WES log3.1log03.0log07.02.1x 4 ++−=  (4) 

 Note that all these regression relationships have very low coefficients of 
determination, even though some explanatory variables (in bold type) have acceptable 
Student ratios (Table 2). Thus, these relations would not be sufficient to apply GR4J to 
ungauged basins. 
 
 
Table 2 Coefficients of regression, Student ratios and coefficients of determination of the regression 
relationships of the GR4J parameters 
Parameter  coefficients of 

regression 
Student ratios coefficient of determination 

(R²) 
x1 a0 = 6.25 49.66 0.0008 
 a1 = 0.001 0.05  
 a2 = 0.05 0.42  
 a3 = 0.12 1.12  
x2 a0 = 5.31  31.53 0.14 
 a1 = –0.06 –3.62  
 a2 = 0.67 –4.68  
 a3 = 0.46 3.35  
x3 a0 = –8.68 –21.19 0.06 
 a1 = 0.41  9.78  
 a2 = 0.44 1.28  
 a3 = 0.50 1.50  
x4 a0 = 1.16  5.92 0.04 
 a1 = –0.07 –3.27  
 a2 = 0.30 1.83  
 a3 = 1.33 8.31  
 
 
TEST DATA 
 
In order to test our approach to determine GR4J parameters on an ungauged 
catchment, we used a large sample of catchments spanning five continents, assembled 
for this study: it is comprised of 1111 catchments, with areas from 0.1 to 50600 km2, 
located in the United States (500 catchments), France (305 catchments), Mexico (260 
catchments), Australia (32 catchments), the Ivory Coast (10 catchments) and Brazil (4 
catchments). Note that the 428 basins of the MOPEX US database (Schaake et al., this 
issue) as well as the 40 basins of the MOPEX French database (Chahinian et al., this 
issue) are part of this international sample. 
 
 
METHOD 
 
Each of the 1111 catchments is successively considered as ungauged (with only a 
limited number of point measurements available) during the first half of the available 
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flow series. It is treated with our approach and its efficiency in control (on the second 
half of the flow series) is assessed by comparing the results to those of a full 
calibration operation. To make the most of all data available, the previous operation is 
carried out a second time using the two periods in reverse order. 
 
 
The proposed approach 
 
Our approach blends prior knowledge and the information contributed by a few 
discharge measurements taken randomly during a given period of time. It is embodied 
into the calibration criterion C  given as: 
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where the parameters xi are chosen to minimize C, σi is the standard deviation of 
parameter i as shown in the calibration process equations, 0

ix  is the set of prior 
parameters, Qobs represents a measured daily flow at the basin outlet and Qcalc  
represents the flow calculated by the model using the set of parameters xi. The 
parameter α is determined as a function of N, the number of daily measurements, in 
order to give the approach its maximum efficiency. The least square of the errors is 
calculated on the square roots of the outflow values in order to avoid giving to some 
large values an overriding role that could reduce the value of the other measurements. 
According to equation (5), when no measurements are available our best estimate is to 
use the prior set of parameters, 0

ix , which can be either the mean values displayed in 
calibration process equations or, alternatively, the values given by the four regression 
relationships given in equations (1) to (4). 
 
 
Test of the proposed approach 
 
We assume that the catchment of interest is now gauged and that a series of discharge 
data are available for a second period of time. Having determined the parameters xi, by 
minimizing criterion C, we can assess the value of these parameter estimates against 
flow data available for the control period. We use the appraisal criterion F: 
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 Criterion F, proposed by Mathevet et al. (2005) is the bounded version of the 
Nash-Sutcliffe efficiency but has the new property of belonging to the interval ]–1,1]. 
This calculation can be made for each half of the available flow record (when 
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reversing their roles) and subsequently for each of the 1111 catchments. The mean 
value of the 2222 individual F  values is denoted F  and will be used to assess the 
efficiency of our approach. The standard deviation of the 2222 F  values is denoted σF. 
 
 
What is the difference between a gauged and an ungauged catchment? 
 
We can tell the difference by just looking at the F  value for both situations: for our 
1111 catchments as for ungauged we have obtained F  = 0.13 when using the mean 
values from Table 1, and F  = 0.14 when using the values derived from the regression 
relationships (equations (1) to (4)). Clearly, very little can be gained from the most 
significant features of a catchment. Opposed to this, when considering all those catch-
ments as gauged and calibrating GR4J in the conventional way, we obtain a much higher 
value of F  = 0.36. Figure 1 shows the corresponding cumulative distribution of the F  
values instead of just their mean value. A shift of the distribution towards the right 
corresponds to an improvement. Our objective is to find a way to move the “ungauged” 
(left) distribution towards the “gauged” distribution with the help of a few daily 
measurements. Referring to the mean of the F values, the closer we will be to 0.36, the 
better our approach. Preliminary work on the same catchment sample (not reported here) 
showed that most models reported in the literature would yield, after full calibration, a 
F  value in the range (0.19 to 0.36). Therefore, we could consider that a candidate 
method starts to be successful when F  is greater than the threshold value of 0.19. 
 
 

 
Fig. 1 Cumulative distribution of F values considering 1111 catchments either as 
gauged or as ungauged. 

 
 

RESULTS 
 
Using criterion C  
 
Results corresponding to N  successively equal to 5, 10, 20 and 50 are shown in Table 3. 
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Table 3 First results using criterion C. 

N 
(number of available streamflow 
measurements) 

α 
(respective weight of the prior 
knowledge) 

F  
(efficiency criterion) 

5 0.03 0.15 
10 0.01 0.16 
20 0.01 0.18 
30 0.01 0.19 
50 0.01 0.20 
 
 
 We see that with only 30 daily measurements, we can obtain the same statistical 
efficiency as with using the less efficient model reported in the literature but fully 
calibrated. These first results are encouraging.  
 
 
Selection of the parameters to be calibrated 
 
We had doubts concerning the σi used in equation (5). It is acknowledged that the 
standard deviations cannot properly perform their task of weighting the efforts with 
respect to each parameter. When the number of measurements is low, one is better 
advised to calibrate only one or two parameters. 
 The results bear out our concern with optimizing all four parameters of the GR4J 
model. Only when the number of measurements is greater than 50, does it become 
worthwhile to calibrate all four parameters. 
 Therefore, in our case of very few measurements, we dropped some parameters 
from criterion C . The corresponding results are shown in Table 4. 
 
 
Table 4 Best selection of parameters to be calibrated as a function of the number of measurements 
available.  

N 
(number of available 
streamflow measurements) 

Parameters * 
optimized 

α 
(respective weight of the 
prior knowledge, see 
equation (5)) 

F  
(efficiency criterion, see 
equation (6)) 

5 x4, x1 0.01 0.16 
10 x4, x1 0.03 0.17 
20 x4, x1, x2 0.00 0.18 
50 x4, x1, x2 0.00 0.21 
*Where: x1, capacity of the soil-moisture accounting store; x2, capacity of the routing reservoir; x3,  unit 
hydrograph time base; x4, gain-loss function parameter. 
 
 
CONCLUSION 
 
To our knowledge, this is the first time that the problem posed by ungauged catch-
ments has been broached by elaborating a strategy of direct discharge measurements at 
the point of interest. The first results presented in this paper show the value of this 
approach. Instead of measuring complex soil parameters, it seems more profitable to 
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focus our efforts on acquiring a few direct measurements of the variable of interest, the 
discharge at the outlet of a catchment. The present article reports on the early stage of 
this strategy, when the first measurements are being acquired. We are continuing our 
work, aiming to increase the benefit that can be expected from a few direct streamflow 
measurements, and we will report further improvements later. 
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