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Abstract Recent progress in collecting spatialized data with remote sensing 
techniques should allow the accounting for: (i) the spatial variability of rainfall 
and (ii) the basins’ physical characteristics in rainfall–runoff models. To benefit 
from this spatial information, lumped approaches can quite easily be replaced by 
semi-distributed approaches. However, two questions need to be investigated. 
Does integrating additional information into a semi-distributed approach 
successfully improve the performance of flow simulations at the basin outlet? 
Which type of heterogeneity should first be taken into account to yield the most 
significant improvements? This paper presents a method to account for basin 
heterogeneity in lumped and semi-distributed models through the use of indices. 
Given the requirement for a large database to produce statistically significant 
results, “chimera” basins (virtual aggregation of two real basins) were used. We 
characterized 212 French basins using approximately 50 indices of pedology, 
geology, morphology and land use. Lumped and semi-distributed versions of a 
rainfall–runoff were compared on 3300 chimera basins. Results indicate that 
integrating “useful” spatial data in a lumped model can improve its performance 
without altering its parsimonious structure. Some indices correlated with rainfall 
confirm that the semi-distributed approach is more advantageous than the 
lumped approach for basins with high spatial variability of precipitation. The 
possible relations between physical characteristics and model parameters are 
investigated to help regionalization attempts and hence improve modelling 
abilities in ungauged basins. 
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INTRODUCTION 
 
For water resources management and flood forecasting lumped rainfall–runoff models 
are well adapted to the requirements of operational applications. Simple models can 
efficiently represent the rainfall–runoff transformation while using a limited number of 
parameters (Perrin et al., 2001). 
 However, estimating even a small number of parameters remains a major problem 
in the case of ungauged basins. Estimating parameters based on the basin physical 
characteristics is even more difficult when these characteristics are variable in space 
and time (Beven et al., 1988; Diermanse, 1998; McDonnell, 2004). In addition, the 
spatial and temporal variability of the rainfall distribution can affect the runoff 
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distribution (Wilson, 1979; Arnaud et al., 2002). Taking this variability into account 
should be easier today, thanks to the high availability of spatialized data. 
 Many studies have attempted to take these variabilities into account through 
different lumped and distributed approaches. (Ambroise, 1995; Refsgaard & Knudsen, 
1996; Krysanova et al., 1999). However, most results are based on a limited number of 
basins, which leaves several questions open on the advantages of taking variability into 
account in rainfall–runoff modelling: 
 

(a) Starting with a lumped approach, does taking spatial heterogeneities into account 
by dividing the basin into sub-basins effectively improve performance of flow 
simulations on a wide range of basins and climates?  

(b) To improve runoff simulation, do we need to take the spatial variability into 
account by treating it in a distributed way?  

 

 The objective of this paper is first to compare the efficiency of different lumped 
and semi-distributed modelling strategies. Then the relationships between the temporal 
and spatial variations observed within a basin are analysed to investigate how model 
efficiency can be improved by semi-distribution of the inputs and the basin 
characteristics. 
 To meet these objectives, a database of French basins was built. Physical attributes 
(morphology, geology, vegetation and pedology) were collected for all basins. 
 For semi-distributed approaches, we used a methodology that uses virtual basins 
called chimeras (Andreassian et al., 2004), which are the combination of two real, 
similarly sized basins that are located in different geographical areas. The exaggerated 
heterogeneity of these basins should allow us to understand which basin characteristics 
are interesting to use for the semi-distribution. To evaluate the amount of heterogeneity 
of each virtual basin, we used some global indices computable on each basin. 
 
 

  
Fig. 1 Geographical distribution of the 212 French basins. 
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MATERIAL AND METHODS   
 
Database 
 
The streamflow data was taken from a sample of 212 basins in France representing a 
wide range of area, geomorphology and climatic conditions. Mean daily rainfall, 
streamflow and mean potential evapotranspiration data were available at a daily time-
step. The distribution of the basins is illustrated in Fig. 1 and the main hydrological 
characteristics are shown in Table 1. This database has a good geographical diversity 
to guarantee the generality of our results. For every basin we used a GIS database and 
a digital terrain model (DTM) to calculate a number of geological, pedological and 
geomorphological characteristics that could be potentially useful to explain the 
hydrological features of the basin. The databases and the distribution of each type of 
information are summarized in Table 2. For each basin, approximately 30 indices, 
representing a majority of the invariant physical characteristics that could influence 
runoff formation, were calculated.  
 
 
Table 1 Annual hydro-climatic characteristics of the real sample. 

 Min. Median Max. 
Mean annual rainfall (mm) 620 940 2300 
Mean annual ETP (mm) 640 720 1250 
Mean annual runoff (mm) 20 420 1960 
Basin area (km2) 7 136 43800 
Time series length (years) 5 13 36 
 
 
Table 2 Type, origin and scale of data bases used to establish the physiographical characteristics of the 
basins and classes of attributes chosen for each type. 

Genre Origin of the data 
bases and scale 

Defined types et represented classes 

Pedology SGBDE The Soil 
Geographical Database 
of Europe at Scale 
1:1000 000, 1996 

SOIL TYPE (5 CLASSES) [Cambisol], 
[Podzoluvisol], [Rendzina], [Lithosol], 
[Fluvisol] 

 TEXTURE (4 classes) 
[Coarse], [Medium], [Medium 
fine], [Fine ] 

Geology BRGM Numerical 
geological map at 
1:100 000 000 (6' 
edition,1996) +  
diverses geologicals 
maps 

LITHOLOGY (6 CLASSES) [Alluvial 
deposits, Ice deposits and Sends], 
[Massives limestones], [Chalks, Molasses], 
[Marls], [Basaltic crystalline magmatic 
rocks ], [Shists and metamorphous,détrital 
rocks] 

BED ROCK 
PERMEABILITY  
(4 classes) [Impermeables], 
[Permeables with cracks], 
[Permeables with interstice], 
[Few permeables] 

Land Use Corine Land Cover 
(Source IFEN, 2000) 
at scale 1:500 000 

7 CLASSES  [Urban areas], [Arable and 
irrigated lands  and permanent crops], 
[Heterogeneous agricultural zones],  
[Prairies], [Forests], [Végétation arbusive], 
[Natural areas without vegetation] 

  

Morphology Logiciel River Tools 
cuple with a DTM at 
mesh of 75 meters 

5 CLASSES [saturability], [slope and 
form], [arborescence of  hydrological 
network], [hydrological response] 
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Model and methodology  
 
The lumped model used for this study is the GR4J model (Perrin et al., 2003). It is a 
daily four-parameter model. It was tested on more than 400 basins in several countries. 
The methodology adopted here to create chimera basin was developed by Andreassian 
et al. (2004). The chimera construction and the model parameterization strategies are 
illustrated in Fig. 2. Based on 212 real basins, this technique provided nearly 3300 
highly heterogeneous virtual basins with known intermediate flows.  
 
 

 
Fig. 2 Construction of the chimera basin C from sub-basins A and B with a surface 
area of SA and SB, respectively. Computation of data input for the sub-basin C from PA 
and PB precipitations QA ,QB streamflows, and Ea Eb potential evapotranspiration. 

 
 
 Our goal here was to evaluate the efficiency of three modelling approaches differ-
entiated by their disaggregation level: a classical initial lumped approach (IL), an inter-
mediate semi-distributed approach (rainfall SD) where only the mean rainfall of each 
sub-basin is distributed and finally a true semi-distributed approach (true or total SD). 
 For the lumped approach, a single parameter vector is optimized with a single 
rainfall Pc and a single evapotranspiration Ec variable as input data. For the intermed-
iate approach, we used two sub-models for sub-basins A and B, each one having as 
input data Pa, Ea and Pb, Eb, respectively. However, the same parameter vector was 
used in calibration for the two sub-models. Consequently, this approach is also defined 
as semi-lumped. The simulated flow Qc was obtained by the sum of two simulated 
intermediary flows Qb and Qa. For the last approach, called the true semi-distributed 
approach, we had two models running in parallel, each one fed by rainfall and the 
potential evapotranspiration of sub-basins A and B. Two parameter vectors, for each 
sub-basin, were optimized. This gave a semi-distribution of the input data and the 
parameters. 
 

 Optimization and performance evaluation The optimization algorithm is the 
step by step method (Edijatno et al., 1999). We used the split-sample test framework. 
(Klemeš, 1986) to assess models. The objective function chosen is the C2M criterion 
(Mathevet, 2005) defined by:  

100*
)200(

(%)2
Nash

NashMC
−

=  (1) 
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in which Nash (%) is the Nash & Sutcliffe (1970) criterion. The C2M is bounded in the 
[–100; 100] domain.  
 The performance of the three approaches was compared in validation mode on 
periods different from those used in calibration mode. The C2MQ criterion used in 
validation mode, is a criterion based on the quadratic error between flows as the 
evaluation criterion, whereas in calibration mode we used this criterion based on the 

errors between the Q . We will compare the average values of C2MQ obtained for the 
three approaches in validation for the whole sample of chimera basins. 
 

 Quantifying the heterogeneities of the chimeras To evaluate the level of 
heterogeneity of the different physical characteristics observed within each chimera, 
we developed a simple heterogeneity index. We found it necessary to choose a 
heterogeneity index that can be calculated on each basin and for physical each 
characteristic. We used the following index, applied to each physical characteristic 
described and each chimera. We define the distance dx between basins by: 

II
IId BA

X
minmax −

−
=   (2) 

where IA and IB are the values of the physical descriptor X for sub-basins A and B, and 
Imax  and Imin  the maximum and minimum values, respectively, of descriptor X on the 
initial sample of 212 basins. This heterogeneity index varies between 0 for the 
homogeneous chimera basins and 1 for the most heterogeneous basins of the sample. 
 

 Relation between heterogeneities and improvement We originally hypothesized 
that the semi-distributed approach would benefit more to the basins with the highest 
variability indices. To test the validity of this hypothesis, we sought to relate the 
performance improvement from lumped to semi-distributed approaches to the level of 
heterogeneity for different physical characteristics. Exaggerating the natural 
heterogeneity of the basins using the chimera method allowed us to highlight the 
physical characteristics that, in the case of high variability, made semi-distribution 
advantageous. Relations between the model performance considering only the semi-
distribution of the parameters (parameter SD) called here ∆C2M (equation (3)) and the 
heterogeneity index of the different physical characteristics evaluated have thus been 
established: 

∆C2M  = [C2MQ (SDtotally) – C2MQ (SDrain)]  (3) 

 
 
RESULTS AND DISCUSSION 
 
The difference in performance provided by the criterion C2MQ between the lumped 
approach and the totally semi-distributed (SD) approach on the 3300 chimera basins is 
presented in Fig. 3. The points above the (1:1) line represent the basins whose 
performance was improved by semi-distribution. It should be noted that approximately 
70% of the basins had significantly improved (greater than 1% of C2MQ) and 
approximately 14% were degraded (greater than –1%). However, there was enormous 
variability in the performance improvements. For the group of basins whose 
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Fig. 3  Model mean efficiency (C2MQ) in validation mode on the whole sample: IL vs 
totally SD approach. 
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Fig. 4 Cumulative frequency curves  of the mean efficiency (C2MQ) in validation 
mode for the 3300 chimera with IL and the two SD approaches. 

 
 
performance in lumped mode was already high (over 75%), no major improvement 
was observed. In fact a high criterion may indicate that the lumped approach is already 
well suited to these basins. Thus, it will be more difficult to improve results. For the 
group of basins whose criterion was lower, clear improvements due to semi-
distribution were observed, as well as a greater number of degradations.  
 In terms of cumulative frequency of the mean efficiency, both semi-distributed 
versions significantly overtouch the initial lumped version (Fig. 4). Table 3 indicates 



M. Bourqui et al. 

 
 

306 

the average performances for the whole sample obtained by the three approaches. The 
true SD version was the best, with a mean difference of 4% in validation. The rainfall 
SD approach provided a mean gain over the lumped approach of approximately 2.4%. 
The improvement attributable only to the distribution of the parameters, independent 
from the improvement caused by the semi-distribution of rainfall, was (4–2.4%) thus 
1.6%. Semi-distribution of rainfall alone was responsible in average of 60% of the 
improvement. Moreover, the greatest improvements can be explained by the non-
correlation of rainfall.  
 
 
Table 3 Average C2M(Q) for the whole sample of chimera for the three different approaches. 

C2M(Q) Lumped approach SD Rainfall only SD totally 
Average 55.8 58.1 59.8 
Median 57.1 60.0 61.9 
Percentile 10% 31.9 34.3 35.8 
Percentile 90% 79.9 78.6 79.17 
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systematically improved. Figure 5(b) summarizes these results through the means of 
the gains obtained on ten crescent classes of this index. These classes represent the ten 
crescent deciles of the index’s distribution. This leads to the conclusion that on average 
for this index, a “positive” relationship is obtained between the improvement using the 
SD parameter approach and the basin heterogeneity index. The same types of 
observation were made for the indexes representing the heterogeneity of the drainage 
network density (Fig. 6) and the hypsometric integral (Fig. 7). The other indicators 
involving the basin morphology showed no significant relationships. 
 
 

 
Fig. 6 (a) Mean efficiency improvement obtained with the SD parameters approach as 
a function of the heterogeneity level of  the DD indicator on the whole sample;  
(b) Same result but presented as a function of increasing classes of the distribution of 
DD heterogeneity indicator. 

 
 

 
Fig. 7 (a) Mean efficiency improvement obtained with the SD approach as a function 
of the heterogeneity level of the HI indicator on the whole sample; (b) same result but 
presented as a function of increasing classes of this indicator. 

 
 
 For the geological indexes, the limestone indexes show a positive trend between 
the mean gains obtained and their heterogeneity rate within the chimeras (Fig. 8(a)), as 
for the permeable rock indicator (Fig. 8(b)). For land use, only the combined indicator 
of arable land and heterogeneous agricultural land described the same type of relation 
(Fig. 8(c)). For pedology, a positive trend is observed only on the amount of 
heterogeneity of Cambisol (Fig. 8(d)) and Podzoluvisol (Fig. 6(e)) type soils. 

(a) (b) 

(a) (b) 
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CONCLUSION 
 
The objective of this study was to bring out the differences in performance between a 
lumped approach and semi-distributed approaches as well as to relate the basin varia-
bility to model performance improvements for artificially heterogeneous basins. This 
investigation has confirmed the relative superiority of the semi-distributed approaches. 
However, this result was not systematically observed on basins. The greater part of the 
improvement stems from taking the rainfall distribution into account. This is observed 
especially in the cases where the rainfall timeseries of each sub-basin are weakly 
correlated in time.  
 While analysing the impact of parameter semi-distribution for given indicators, 
relationships were found between the basin heterogeneities and the performance gains 
of the semi-distributed approach. This variation in performance is conditioned by the 
initial performance of the lumped approach: the basins with the weakest initial 
performance obtained the greatest gains. In fact it is easier to improve the modelling of 
the basins when a lumped approach is not suitable.  
 Similar tests at the hourly time-step should be interesting to study to continue this 
work. Indeed at this time step, the rainfall field is more decorrelated in time for a given 
distance. In addition, the relationships that emerged from the physical heterogeneities 
may be used in the definition of similar basins for the modelling of ungauged basins 
(Rojas Serna, 2005).  
 
 
REFERENCES 
 
Ambroise, B., Perrin, J. L. & Reutenauer, D. (1995) Multicriterion validation of a semidistributed conceptual model of the 

water cycle in the Fecht Catchment (Vosges Massi, France). Water Resour. Res. 31(6), 1467–1481. 
Andreassian, V. et al. , Oddos  A. Michel C., Anctil F., Perrin C. and Loumagne, C.(2004) Impact of spatial aggregation of 
inputs and parameters on the efficiency of rainfall–runoff models: a theoritical study using chimera watersheds. Water 
Resour. Res. 40(5),W05209, doi: 10.1029/2003WR002854. 
Arnaud, P., Bouvier, C., Cisneros, L. & Dominguez, R. (2002) Influence of rainfall spatial variability on flood prediction. 

J. Hydrol. 260(1–4), 216–230. 
Bergström, S. & Forsman, A. (1973) Development of a conceptual deterministic rainfall–runoff model. Nordic Hydrol. 4, 

147–170. 
Beven, K. J., Wood, E. F. & Sivapalan, M. (1988) On hydrological heterogeneity—catchment morphology and catchment 

response. J. Hydrol. 100(1–3), 353–375. 
Chow, V. T. (1964) Handbook of Applied Hydrology. McGraw-Hill Book Co, New York, USA. 
Diermanse, F. L. M. (1998) Representation of natural hétérogeneity in rainfall–runoff models. Physics and chemistry of 

the Earth, Part B. Hydrol. Oceans Atmos. 24(7), 787–792. 
Edijatno Nascimento, N. O., Yang, X., Makhlouf, Z. & Michel, C. (1999) GR3J: a daily watershed model with three free 

parameters. Hydrol. Sci. J. 44(2), 263–277. 
Horton, R. E. (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative 

morphology. Geol. Soc. Am. Bull. 56, 275–370. 
Klemeš, V. (1986) Diletantism in hydrology: transition or destiny? Water Resour. Res. 22(9), 177S–188S. 
Krysanova, V., Bronstert, A. & Muller-Wohlfeil, D. (1999) Modelling river discharge for large drainage basins: from 

lumped to distributed approach. Hydrol. Sci. J. 44(2), 313–331. 
Mathevet, T. (2005) Quels modèles pluie-débit globaux pour le pas de temps horaire? Développements empiriques et 

intercomparaison de modèles sur un échantillon de 313 bassins versants. PhD Thesis, ENGREF Paris, France. 
McDonnell, J. & Ross, J. W. (2004) On the need of classement classification. J. Hydrol. 299, 2–4. 
Merz, R. & Bloschl, G. (2004) Regionalisation of catchment model parameters. J. Hydrol. 287(1–4), 95–123. 
Moussa, R. & Bocquillon, C. (1993) Morphologie fractale du réseau hydrographique. Hydrol. Sci. J. 38(3), 187–201. 
Nash, J. E. & Sutcliffe, V. (1970) River flow forecasting through conceptual models. I. A discussion of principles.  

J. Hydrol. 10, 282–290. 
 



M. Bourqui et al. 

 
 

310 

Perrin, C., Michel, C. & Andreassian, V. (2001) Does a large number of parameters enhance model performance? 
Comparative assessment of common catchment model structures on 429 catchments. J. Hydrol. 242(3–4), 275–301. 

Perrin, C., Michel, C. & Andreassian, V. (2003) Improvement of a parsimonious model for streamflow simulation.  
J. Hydrol. 279(1–4), 275–289. 

Refsgaard, J. C. & Knudsen, J. (1996) Operational validation and intercomparison of different types of hydrological 
models. Water Resour. Res. 32(7), 2189–2202. 

Rojas Serna, C. (2005). Quelle connaissance hydrométrique minimale pour définir les paramètres d'un modèle pluie-débit? 
PhD Thesis, ENGREF, Paris, France. 

Wilson, C. B., Valdes, J. D. & Rodriguez-Iturbe, I. (1979) On the influence of the spatial distribution rainfall on storm 
runoff. Water Resour. Res. 15(2), 321–328. 


