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Abstract A method for estimating the flow duration curve (FDC) in an ungauged basin (i.e. regionalization 
of FDCs) is developed. An FDC can be described by the mean value and the coefficient of variation either in 
terms of empirically determined regional FDCs or as fitted theoretical regional curves. The development of 
these two first order moments of the FDC along the river network and with the spatial scale, i.e. the basin 
area, is analysed and a scheme for their interpolation along the river network is elaborated. Daily runoff data 
records from Costa Rica are used to demonstrate the findings. The estimation errors are highest in relative 
terms (~30%) for the durations longer than 85%, somewhat smaller for durations less than 20% (~10%) and 
small for central parts of the FDC (~8%). Differences between the empirical and theoretical curves are 
minor, although the latter give systematically better results especially in central parts of the FDC. 
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INTRODUCTION 

The Flow Duration Curve (FDC) represents the relationship between the magnitude and frequency 
of daily, weekly, monthly (or other time interval) streamflow for a particular river basin, providing 
an estimate of the percentage of time a given streamflow was equalled or exceeded over a 
historical period (Vogel & Fennessey, 1994). Foster distinguished (1933) two uses of the FDC:  
(i) as a probability curve to determine the probability of occurrence of future events; and (ii) as a 
conventional tool to study the data. The FDC, however, gives a static and incomplete description 
of a dynamic phenomenon. For a complete description a multivariate distribution, which defines 
the parent distribution of the data, must be considered, the FDC being its marginal distribution. 
The FDC is a natural start when analysing streamflow data, as evident from its wide practical 
application (Vogel & Fenessey, 1995; Holmes et al., 2002b). 
 Usually the FDC is founded on daily records (e.g. Holmes et al., 2002b) although exceptions 
exist when monthly and 10-day data have been used (e.g. Singh et al., 2001). Foster (1933) 
compared daily, monthly and annual FDCs noting that the differences between the curves for 
different duration (time scale) change with the type of river basin. He handled the problem by 
constructing a dimensionless flow duration curve (DFDC), dividing all observations by the mean 
annual flow and assuming that this curve is transferable to an ungauged site, although with 
caution.  
 The DFDC is often a starting point for the regionalization of FDCs, i.e. when predicting the 
FDC within ungauged basins. While some authors mainly concentrate on the properties of 
empirical FDCs (quantiles) and map these (e.g. Holmes et al., 2002a) other studies assume a 
theoretical distribution (e.g. LeBoutillier & Waylen, 1993; Singh et al., 2001). The lognormal, or 
the more general Box-Cox transformation, are those used most. For regionalization, two 
approaches are utilised, viz. the delineation of homogenous regions (e.g. by means of cluster 
analysis) and the use of multiple regression. A DFDC is selected for a homogeneous region, 
defined by, e.g. physical, climatic and streamflow characteristics of basins. Multiple regression is 
used to explain the geographic variation of each statistic of the FDC (quantiles, distribution 
parameters). Size of drainage area and the length of the main river course from the divide of the 
basin to the site of interest are most often used in regression equations. They implicitly indicate a 
spatial scale dependence of the FDC, an aspect that will be further developed herein. 
 In a given river basin with its river network the statistical characteristics are related through 
contextual rules (Gottschalk et al., 2006). Such rules are commonly not defined in regional 
hydrology, where river basins are rather seen as independent not interacting objects. Neither 
multiple regression nor cluster analysis, widely used in hydrology for regionalization, considers 
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different parts of the basin as interacting objects. An approach for regionalization of FDCs 
presented here, acknowledges that statistical characteristics of runoff develop along the river 
system in a basin from the headwaters to the outlet. By this the regionalization problem is turned 
to interpolation of runoff characteristics along this network. The approach for regionalization of 
FDCs is tested on daily runoff data records from Costa Rica.  
 
EMPIRICAL FLOW DURATION CURVES 

Daily runoff series for 74 runoff stations in Costa Rica with record lengths over 40 years have 
been used. The deviations between the empirical FDC proved to be significant, which contradicts 
Foster’s assumption about transferability. Thus it is necessary to go at least one step further 
considering not only the mean value (the first order moment) but also the second order moment. 
 The second order moment in terms of the coefficient of variation (V) shows a big variation 
with a range 0.5–2.2 for the analysed daily data. This can be considered by standardizing DFDC, 
i.e. a subtraction of 1.0 and division by V. These standardized FDC (SFDC) might then be used as 
“regional” duration curves (cf. Fig. 1). It is seen that the average curve (thick line) represents the 
series well for the majority of durations. Discrepancies shown by a few stations could be explained 
by specific geology and climate. Figure 2 shows the DFDC-quantiles as a function of the 
coefficient of variation, V. In general a strong dependence noted allows establishing linear regression 
relationships for all the quantiles used. The dependence on V, for example, is high at the duration 
level 50%, i.e. the median (Me), while at Q25% it is almost constant and independent of V.  
 These two ways of considering the role of V are quite similar:  both assume a linear depen-
dence on V, but in the first case the zero intercept is 1. In both cases there might be a risk that for 
very high values of V the linear relations cross the zero line for values with duration near 100%. 
 

 
Fig. 1 Regional SFDC (thick line) for the rivers of the Caribbean slope of Costa Rica. DFDCs for individual 
rivers are given as a background. 

 

 
Fig. 2 Relationship between the coefficient of variation (V) and normalized runoff (daily values) for Costa Rica. 
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THEORETICAL FLOW DURATION CURVES 

Following Foster (1933), an FDC is a plot of the empirical quantile function Qp i.e. the pth 
quantile or percentile of streamflow for a certain duration versus exceedance probability p, where 
p is defined by: 

{ } ( )qFqQPp Q−=≤−= 11   (1) 

As noted earlier, many regionalization studies rely on the assumption of a theoretical distribution 
of FDC. The two most widely used distributions are the 2-parameter gamma and the lognormal. 
For normalized data both these distributions can be expressed in terms of the coefficient of 
variation only. For the lognormal we thus have: 
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The quantile yp is determined from YpYp kmy σ+= where kp is the quantile (frequency factor) of 
the normal distribution. For normalized data (i.e. DFDC) quantile function is: 
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where zp  is the Gaussian variate of the probability p. For the special case of the median (Me=y0.5) 
for which z0.5=0 we find: 
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The corresponding cdf of the two parameter gamma distribution for normalized data is:  
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The calculation of quantiles xp must in this case be performed by numerical inversion of the 
cumulative distribution.  
 For both distributions the quantiles are thus functions of the coefficient of variation only, as 
illustrated in Fig 3. The diagrams look very similar in the linear scale with a small difference in the 
curvature for high values, the gamma having an almost linear growth of the 1% quantile. In a 
logarithmic scale the difference is more drastic: the gamma distribution declines very quickly 
towards zero, while the lognormal declines smoothly along concave curves for increasing values 
of the coefficient of variation.  
 There is a strong resemblance between the empirical plot in Fig. 2 and the theoretical curves 
in Fig. 3. For the high flow values (<Q25) the resemblance is highest with the gamma curves while 
for low flow values (>Q75) the similarity is strongest with the lognormal distribution.  
 
      (a)                                                            (b) 

 
Fig. 3 Quantiles (grey lines) of the lognormal distribution (a) and the gamma distribution (b) as a function of 
the coefficient of variation.  
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REGIONALIZATION OF DURATION CURVES 

The regionalization problem is here divided into two. The first step is the establishment of an 
empirical DFDC and/or the parameterization of the DFDC. The analyses referred to earlier 
indicate a possibility of describing the DFDC through two parameters, namely the long-term 
annual mean (MAR) and the coefficient of variation for daily data (V). The second step is to map 
MAR and V along rivers. The patterns of spatial variability of the mean and variance of runoff that 
can be identified from observations are influenced by the fact that observations represent averaged 
values over drainage basins. To map these quantities, the existence of an instantaneous point 
runoff (IPR) process is assumed, turning the task into the inverse problem of identifying this 
process from the observations representing averages in time and space. Then this IPR process is 
averaged along rivers yielding the desired map. 
 Mapping the MAR value is a rather straightforward task and is basically a problem of 
stochastic interpolation with local support (or in another vocabulary, block kriging) with a 
possibility of including a water balance constraint (Gottschalk, 1993b). In the case of Costa Rica, 
the values at the outlet of the rivers to the ocean are not known and therefore constraints on the 
water balance were not possible to apply. However, stochastic interpolation with local support is 
an appropriate method. A complexity in the structure of the covariance/semivariogram for runoff 
data, representing a mixture of nested and non-nested basins was handled according to the 
approach by Gottschalk (1993a). The resulting MAR map needs to be scrutinized carefully for 
errors and inconsistencies. Gomez et al. (2006) develop this topic further presenting the MAR map 
for Costa Rica.   
 The variability pattern of the variance identified from observations is still more complex than 
that for the mean. There are two sources of variability, viz. natural variability of the IPR process 
and variability induced by the variance reduction dependent on the support (i.e. the basin area). 
This latter part may constitute a significant part of the total variability and it also introduces a 
dependence on the basin area.  The regionalization procedure herein is based on the developments 
by mainly Gottschalk et al. (2006). First, we benefit from the fact that the variation pattern of MAR 
is also reflected in the variance by introducing a new variable, namely the normalized 
instantaneous point runoff, i.e. IPR divided by the point mean. The covariance function between 
normalized values Z(A1) and Z(A2) over two (basin) averages with areas A1 and A2, respectively, is 
calculated from: 
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where ( )uu ′′′ρ ,  is the point correlation function, σ(u) the point standard deviation and with 
u′ representing a point within the basin area A1 and u″ within the basin area A2. As we deal 
with normalized values Z(A) the standard deviation equals the coefficient of variation of 
the original variable V. The variance is accordingly: 
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Second, a power relation between V and MAR of the IPR process is established. Finally, the MAR 
map and the theoretical expression for variance reduction due to local averaging over the basin 
support (equation 7) is used to produce a map of V. The system HydroDem for structuring 
hydrographical networks (Leblois & Sauquet, 2000) has been used as a background for 
interpolation. The resulting V map (Fig. 4) is consistent with the statistical law for variance 
reduction and also considers the spatial variability through the dependence of V on MAR.  
 
APPLICATION  

Estimation of the FDC at an ungauged site starts with estimation of the coefficient of variation V 
for this site from the map Fig. 4. Using the dependences illustrated in Figs 2 and 3, either an 
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Fig. 4 Map of the coefficient of variation V of daily runoff for Costa Rica. The map shows basin integrated 
values along rivers. 
 
empirical or a theoretical normalized FDC can be estimated. MAR is estimated from the corresponding 
map. Finally, multiplying the normalized FDC by the estimated MAR yields FDC at the ungauged site.  
 Table 1 offers some information about the results. The multiplication by MAR in m3 or mm year-1 
yields high correlations between observed and estimated quantiles due to differences in the size of 
the river basins. Therefore the table shows the normalized values that are more informative with 
respect to the FDC. As the estimates of SFDC and the theoretical gamma both proved to be 
inferior, for briefness only estimates of the empirical regional FDC obtained by regression and the 
theoretical FDC based on the lognormal distribution are compared. The estimation errors are 
highest in relative terms (~30%) for the percentage points higher than 85%, somewhat smaller for 
percentage points less than 20% (~10%) and small for the central parts of the FDC (~8%). 
Differences between the empirical FDC and the lognormal FDC are minor, although the latter 
gives systematically better results especially in the central parts of the FDC. 
 
Table 1 Estimates of regionalized FDC (normalized values). 

Quantile parameter Q05 Q10 Q25 Q50 Q75 Q90 Q95 
Mean 2.53 1.94 1.27 0.77 0.44 0.31 0.28 
Standard deviation 0.46 0.25 0.12 0.12 0.12 0.11 0.10 
        

Correlation 0.84 0.59 0.53 0.87 0.68 0.63 0.61 
Abs.std.error 0.25 0.20 0.10 0.06 0.09 0.08 0.08 

Regional 
Lognormal 
FDC Rel.std.error (%) 9.9 10.4 7.9 7.7 20.2 26.0 27.6 
         

Correlation 0.83 0.53 0.47 0.86 0.64 0.58 0.56 
Abs.std.error 0.26 0.21 0.10 0.06 0.09 0.09 0.08 

Regional 
emp.FDC, 
regression Rel.std.error (%) 10.2 10.9 8.4 7.8 21.3 27.3 28.8 
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CONCLUSIONS 

Empirical regional FDC, as well as theoretical FDC based on the lognormal distribution applied 
here, are standard tools in the regionalization of FDC. A first contribution of this study is the use 
of not individual but a whole ensemble of FDCs in a basin/region, as shown in Figs 2 and 3. This 
illustrated that this regional FDC is well described through the two first order moments—the mean 
annual runoff (MAR) and the coefficient of variation (V) of daily runoff.   
 The second contribution of this study is the innovative approach for interpolation of the mean 
annual runoff (MAR) and the coefficient of variation (V) of daily runoff that were mapped for all 
major rivers of Costa Rica. This approach considers the fact that patterns of spatial variability of 
the mean and variance of runoff reflect observations representing averaged values over drainage 
basins and furthermore are subordinated through the hierarchical structure of the river network  
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