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Abstract For more than a decade, Artificial Neural Networks (ANNs) have 
been increasingly used in hydrology as flexible black-box models of non-
linear type. Within this category of models, the “multi-layer feed-forward 
network” used in this study consists of an input layer, an output layer, and one 
“hidden” layer in between. The model is applied to daily data of three 
catchments, all located in northwest France, for river flow simulation and 
forecasting and its performance is compared with those of five system-
theoretic models and one conceptual model. The ANN is observed to be the 
best performing individual model for the catchments tested. In the subsequent 
application of the Neural Network Method (NNM) for combining the outputs 
of the individual models, in different combinations, i.e. in a “multi-model 
approach” for deriving consensus forecasts, the NNM (as one of three Model 
Output Combination Techniques (MOCTs) considered) is found to be the best 
performing MOCT and also better than the best individual model. The Galway 
Flow Modelling and Forecasting System (GFMFS), a software package 
developed by the present authors, is used in the study.  
Key words  black-box models; hidden layer; multi-model approach; Neural Networks 

 
 
INTRODUCTION 
 
With the advent of advanced computing technologies, newer concepts and techniques 
such as Artificial Neural Networks (ANNs) have found extensive use in hydrology. 
ANNs, being conceptually analogous to the biological neural network controlling the 
functions of the human brain, are highly interconnected networks of basic processing 
units, called neurons, and have weights associated with the links (or information 
pathways) between the neurons. The ANN approach is essentially data driven and 
considered to be appropriate in situations where the overall transformation process and 
its sub-processes are not explicitly defined, and satisfactory explanations of the 
physical relationships involved can not be advanced. As deep physical interpretations 
cannot be ascribed to the weights determined during training of the ANNs (Minns & 
Hall, 1996), the models based on ANNs are considered as being “black-box”, of non-
linear type. For simulating and forecasting river flows, the outputs of the highly non-
linear, complex, and dynamic rainfall–runoff transformation process, ANNs have been 
successfully applied as efficient tools. Many studies have been carried out on the data 
of different catchment types for improving the performance of rainfall–runoff 
transformation models by using different network architectures, learning rules and 
training algorithms (e.g. Halff et al., 1993; Smith & Eli, 1995; Shamseldin, 1997; 
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Dawson & Wilby, 1998; Campolo et al., 1999; Tokar & Johnson, 1999; Zealand et al., 
1999; Birikundavyi et al., 2000; Tingsanchali & Gautam, 2000; Sivakumar et al., 
2002; Jain & Indurthy, 2003; Rajurkar et al., 2004). Innovative ANN applications 
include those of Hu et al. (2001) who developed the “range dependent” neural 
networks based on the clustering algorithm, Shamseldin et al. (1997) and Shamseldin 
& O’Connor (1999, 2001) who used ANNs for combining outputs of individual 
models and for forecast updating, and Toth et al. (2000) who applied ANNs to predict 
short-term rainfall for real time flood forecasting.  
 In the present study, a multiple-input single-output feed-forward form of neural 
network is used for continuous rainfall–runoff simulation, operating firstly as an 
individual model (ANN) and subsequently as a method (NNM) for combining the 
outputs from a number of different individual substantive models, including the ANN. 
Three catchments, located in the northwest of France, have been chosen for the study. 
The performance of the ANN as an individual model is compared with that of the 
conceptual Soil Moisture Accounting and Routing model with Groundwater 
modification (SMARG), two forms (parametric P and non-parametric NP) of two 
system-theoretic models, namely, the naïve Simple Linear Model (P-SLM and NP-
SLM) and the quasi-linear seasonally-based Linear Perturbation Model (P-LPM and 
NP-LPM), and finally the wetness-index based system-theoretic Linearly-Varying 
Gain Factor Model (LVGFM). In each case, model simulation performance is 
evaluated on the basis of the Nash-Sutcliffe R2 index of model efficiency (Nash & 
Sutcliffe, 1970). 
  As a separate exercise, following the multi-model approach for simulating the 
flows by combining outputs from different models, three Model Output Combination 
Techniques (MOCT) are applied in which strengths of individual models are pooled 
and perceptible weaknesses de-emphasized, producing a “consensus” forecast. The 
selected MOCTs are the Neural Network Method (NNM), the Weighted Average 
Method (WAM), and the Simple Average Method (SAM, as a naïve form of MOCT). 
The simulation performances (R2) of the MOCTs as well as the performance of the 
MOCTs vis-à-vis the best of the individual models are compared to assess the efficacy 
of the MOCT concept for the test catchments. On the basis of the results, conclusions 
are drawn and recommendations made. 
 
 
THE CATCHMENTS AND THE DATA CHARACTERISTICS 
 
The three small catchments considered in the study, identified here simply by their 
station codes J2034010, J3024010, and J4124420, are located in Bretagne (Brittany) 
province in northwest France. Daily data for these catchments were generously 
provided by Météo France and the Direction de l’Eau for application in the MOPEX 
(Model Parameter Estimation Experiment) Project, and made available to the present 
authors for their contribution to the July 2004 MOPEX Workshop held in Paris.  
Table 1 provides some salient features of the catchments, and their locations are shown 
in Fig. 1. As seen in Table 1, all three catchments have practically the same mean 
catchment altitude, their mean slopes being flatter than 1 in 100, and their areas (all 
small) are of the same order of magnitude. 
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 Summary characteristics of the daily hydrological data for the catchments are 
given in Table 2. The seasonal mean variations of evaporation, rainfall and discharge, 
all smoothed by Fourier harmonic analysis (using four harmonics), are shown in Fig. 2. 
Each data set has 2557 data points (for seven years), starting from 1 August 1995. The 
hydrological characteristics of all three catchments display considerable uniformity in 
values and distribution throughout the data period which suggests that all three belong 
to the same hydrological regime. For J4124420, the flow generation is least, and the 
evaporation highest. 
 
 

 
 
 

 
 
 
Table 1 Catchment characteristics. 

Station 
Code No. 

Station Name Area 
(km2) 

Length of 
longest 
stream (km) 

Altitude 
at outlet 
(m) 

Altitude at 
highest point 
(m) 

Mean 
altitude  
(m) 

J2034010 Le Guindy à Plouguiel 125 42.1 20 300 83 
J3024010 Le Guillec à Trézilidé 43 11.6 35 120 85 
J4124420 La Rivière de Pont-l’Abbé à 

Plonéour-Lanvern [Tremillec] 
32.1 9.0 15 158 84 

Rainfall (mm/day) 
Evaporation (mm/day) 
Discharge (mm/day)

Fig. 2 Smoothed seasonal variation of the hydrological variables. 
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Fig. 1 Location map along with shape and size of the three catchments. 
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MODELS AND EFFICIENCY CRITERIA  
 
With the exception of the naïve SLMs (NP-SLM and P-SLM, used purely as base-line 
models), all the individual models applied in this study, namely, the conceptual 
SMARG model, the Linear Perturbation Model (P-LPM and NP-LPM), and the 
Linearly-Varying Gain Factor Model (LVGFM) were developed at the Department of 
Engineering Hydrology at the National University of Ireland, Galway, Ireland. 
 
 
Table 2 Characteristics of hydrological daily data (period 1 August 1995–31 July 2002). 

Catchment Discharge Q (mm day-1) Rainfall R (mm day-1) Evaporation E (mm day-1) 
 Max Min Mean SD Max Min Mean SD Max Min Mean SD 

% 
days 
R>E 

J2034010 11.8 0.10 0.89 0.90 45.8 0.0 2.63 4.56 3.7 0.50 1.94 1.11 37.3 
J3024010 14.4 0.30 1.45 1.28 49.9 0.0 2.78 4.66 3.6 0.34 1.88 1.17 38.7 
J4124420 8.94 0.08 1.43 1.43 55.5 0.0 3.38 5.96 4.4 0.48 1.97 1.20 38.1 
 
 
 The “Galway Flow Modelling and Forecasting System (GFMFS)”, a software 
package incorporating a suite of different hydrological models and techniques, also 
developed in Galway by the present authors, was used. These models are described 
elsewhere (e.g. Kachroo & Liang, (1992), for SLM and LPM; Ahsan & O’Connor, 
(1994), for the LVGFM; Kachroo, (1992), for SMAR, the original version of SMARG; 
Goswami et. al. (2002) for SMARG and comprehensive description of all models used 
in this study). Likewise, the three MOCTs (SAM, WAM, and NNM) are described by 
Shamseldin et al. (1997). Note that the structure of the individual ANN rainfall–runoff 
model is identical to that of the NNM form of MOCT used for consensus forecasting 
of flows. For each neuron in the hidden layer (and also that in the output layer) of the 
neural networks used in this study, the received input array yi is transformed to its 
output yout by the non-linear S-shaped activation transfer function: 

( )[ ] ( ){ }[ ]∑∑ +σ−+=+= 0exp11 wywwywfy iioiiout   (1) 

where f ( ) denotes the transfer function, wi is the input connection pathway weight, the 
summation extends from i = 1 to i = M, the total number of inputs, and wo is the neuron 
threshold (or bias), i.e. a base-line value independent of the input. The term on the 
right hand side of Equation (1) is the widely-used logistic function, a form of sigmoid 
function, bounded in the range [0,1]. The weights wi, the threshold (or bias) w0 and the 
σ of different neurons can be interpreted as parameters of the selected network. If “L” 
is the total number of neurons in the input layer and “m” is the total number of neurons 
in the hidden layer, then the total number of weights to be estimated for the ANN or 
NNM models, is [(L+1)m + (m+1)]. 
 Despite its well-known shortcomings (Kachroo & Natale, 1992), only the 
dimensionless global model-output efficiency index R2 (Nash & Sutcliffe, 1970) is 
used in this paper for judging the relative performance of the individual models and the 
MOCTs. Whereas R2 = 1 would denote the ideal or “perfect” fit, it is generally agreed 
that R2 > 90% is indicative of a very good model fit, while that in the range of 80–90% 
is a fairly good fit, and a range of 60–80% is considered unsatisfactory. 
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METHODOLOGY 
 
Data gaps in the discharge series for J4124420 were synthetically filled by: (i) initially 
assuming –9.99 as the data value for each missing number, and (ii) calibrating each 
model iteratively until the model performance in two successive tests converged, the 
discharge series used for filling the gaps in each iteration being the corresponding 
discharge estimates of the data values simulated in the previous iteration. For each 
model, the series having the best (i.e. highest) R2 performance value was adopted for 
filling the original gaps in the series. 
 For the NP-SLM, the NP-LPM, and the LVGFM, the ordinary least squares (OLS) 
method is used for estimation of the system response function. Calibration for these 
models involves determining a suitable value of memory length by trial and error by 
noting each time the shape of the system response until a satisfactory shape is obtained 
for a particular value of the memory length and near-maximum value of R2. The OLS 
procedure is adopted also for estimation of parameters of the P-SLM and the P-LPM. 
For the SMARG model, the optimum parameter set is optimized using the Simplex 
search method by varying the memory length (by trial and error) of the surface runoff 
response function, and also the starting values and bounds of the parameters. 
 The connection pathway weights (wi) and the different neuron threshold values 
(w0) for the ANN model are estimated by a procedure usually referred to as training (or 
simply as calibration). Rather than the more commonly used back-propagation learning 
algorithm, the Simplex optimization procedure is used in the present study in searching 
for the “optimum” parameter set i.e. the “best” values of the connection weights. For 
the input and hidden layers, the number of neurons required for achieving the near-
maximum value of R2 was selected by trial and error.  
 The SAM, WAM, and NNM forms of MOCT were applied to the outputs of all 
seven individual models, together with those of the best 6, 5, 4, 3, and finally the best 2 
models. 
 The “split-record evaluation procedure” was adopted for calibration and validation 
of all models. Whereas data starting from the first data point to the end of the fourth 
year were used for calibration, the R2 values were evaluated over the last three 
calibration years, considering the first water-year’s data as the “warm-up” period. This 
warm-up period is in conformity with that adopted for all catchments, including the 
three catchments considered in the present study, at the Paris MOPEX Workshop of 
2004 (O’Connor et al., 2004). The relative performance of the models is adjudged 
from the R2 values in calibration. 
 
 
RESULTS AND DISCUSSIONS 
 
Table 3 shows the R2 values for each of the three catchments obtained by running each 
calibrated model. Because of the naïve SLM representation of the outflow series as 
simply the convolution summation of the response function with the inflow series, the 
performances of the P-SLM and the NP-SLM are, as expected, generally inferior to 
those of all other models, with the unconstrained NP-SLM form being generally better 
than that of the constrained P-SLM.  
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Table 3 R2 values in calibration (Rc
2) and verification (Rv

2) produced by seven models, and ranks. 

J2034010 J3024010 J4124420 Model 
Rc

2 Rv
2 Rank Rc

2 Rv
2 Rank Rc

2 Rv
2 Rank 

P-SLM 47.75 54.42 7 31.44 37.29 7 50.89 54.66 7 
NP-SLM 48.00 55.66 6 46.72 52.62 6 52.51 57.95 6 
P-LPM 73.64 60.30 5 69.47 47.43 5 75.46 52.84 5 
NP-LPM 75.70 69.19 4 70.11 53.98 4 82.90 73.34 3 
SMARG 81.64 81.46 3 85.85 78.17 3 80.50 89.10 4 
LVGFM 85.65 92.14 2 86.61 88.48 2 86.54 87.42 2 
ANN 91.87 89.51 1 90.32 86.87 1 90.38 89.19 1 
 
 
 As a result of the seasonality exhibited by the rainfall and the discharge series (see 
Fig. 2), the performances of the P-LPM and the NP-LPM are significantly better than 
their SLM counterparts. For the catchments J2034010 and J3024010, a significantly 
better fit of the simulated discharge series is obtained by the conceptual SMARG 
model (in comparison with these four system-theoretic models), the R2 value with the 
SMARG model being more than 80% in both cases for both calibration and 
verification. However, for J4124420, the R2 value obtained by SMARG model, while 
still greater than 80%, is nevertheless slightly lower than that produced by the NP-
LPM for the calibration period but significantly higher for the validation period. The 
LVGFM, an elaboration of the NP-SLM that uses the output of the best amongst the 
five above-mentioned models (SMARG, for all three catchments) as an auxiliary 
model to introduce linear variation of the gain factor with the selected catchment 
wetness index at each time-step, performs better than both forms of the SLM and the 
LPM, and its auxiliary model, SMARG. However, the ANN model, which uses the 
recent outputs from the best stand-alone model (SMARG) as inputs to the neurons in 
the input layer (in order to simulate storage effects) along with recent rainfall inputs, 
performs better than the LVGFM, the SMARG, and both forms of the SLM and LPM 
models. The ANN model, therefore, performs best among the individual substantive 
models tested, for all three catchments. The type of input series and the number of 
previous observed data values for the neurons in the input layer, the number of neurons 
in the hidden layer, and the resulting number of weights optimized for the chosen 
ANN models are provided in Table 4. Although the number of weights (i.e. 
parameters) for describing the network renders the ANN models non-parsimonious, 
leading to more complexity and corresponding difficulty in optimization, yet the 
significant improvement in R2 values derived from application of the ANN models on 
the three catchments offsets these weaknesses and justifies their application. 
 
 
Table 4 Particulars of the network structure of the ANN models finally selected. 

Neurons in the input layer Station code no. 
Total no. Type of input series 

No. of neurons in 
the hidden layer 

Total number of 
weights 

J2034010 9 nR:4, nE: , nS:1 3 34 
J3024010 3 nR:2, nS:1 3 16 
J4124420 5 nR:4, nS:1 5 36 
nR, no. of rainfall data; nE, no. of evaporation data; nS, no. of outputs from SMARG. 
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 The consensus simulation results, obtained by applying the MOCTs to the outputs 
of the individual substantive models in different combinations, are provided in Table 5 
where it may be seen that the performance of the NNM is generally the best, followed 
by the WAM. The highest performance in calibration is generally achieved by the 
NNM combining outputs from all seven individual substantive models, although 
performance levels significantly higher than that of the best individual substantive 
model for any catchment could still be achieved by the NNM with less than seven 
combined outputs. SAM, being a special case of WAM, with equal weights, generally 
performs worse than the other two MOCTs. 
 
 
Table 5 R2 values in calibration (Rc

2) and verification (Rv
2) produced by MOCTs, and ranks. 

J2034010 J3024010 J4124420 Combinations for 
MOCTs Rc

2 Rv
2 Rank Rc

2 Rv
2 Rank Rc

2 Rv
2 Rank 

SAM 84.27 81.55  84.68 73.62  87.37 83.87  
WAM 94.05 92.14  92.73 88.62  93.55 94.24  

All 7 
models 

NNM 96.00 86.27 1 93.51 83.54 2 94.86 90.59 1 
SAM 87.53 84.30  87.50 77.09  89.73 86.59  
WAM 93.98 92.20  92.62 88.76  93.55 94.27  

Best 6 

NNM 95.15 86.39 2 93.40 84.62 3 94.28 90.81 2 
SAM 90.73 87.26  89.20 79.19  91.57 89.28  
WAM 92.51 91.23  92.00 88.11  93.41 93.64  

Best 5 

NNM 93.41 85.89  93.53 84.77 1 94.19 88.30 3 
SAM 91.78 90.07  90.63 83.70  92.12 93.03  
WAM 92.60 91.17  91.76 88.79  93.00 93.76  

Best 4 

NNM 94.16 87.04 3 92.32 86.80  92.68 90.01  
SAM 91.51 91.29  91.59 87.59  92.30 93.08  
WAM 92.63 91.58  91.88 89.13  92.99 93.70  

Best 3 

NNM 92.88 86.66  91.62 86.41  93.15 93.34  
SAM 92.11 92.97  91.77 89.52  86.90 84.30  
WAM 92.71 92.04  91.88 89.24  87.79 82.30  

Best 2 

NNM 92.89 87.48  92.87 87.56  91.61 88.35  
% improvement of 
the best MOCT over 
the best individual 
model (of Table 3) 

4.5   3.6   5.0   

 
 
 For each of the three test catchments, the hydrographs of the rainfall, the observed 
discharge, and the discharge simulated by the best performing NNM model 
corresponding to the last water-year of the calibration period (i.e. the water-year at the 
middle of the data records used) are presented in Figs. 3, 4 and 5. It can be seen that 
the simulated discharge values in each case match fairly well with the corresponding 
observed discharges for that year, both in low as well as high flow values. The “time to 
peak” of the observed flows is also reproduced quite well. 
 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
Amongst the individual substantive models, the performances of both forms of the 
naïve SLM (NP-SLM and P-SLM), which are very crude and simplified forms of the 
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Fig. 3 Observed & simulated discharge and rainfall for the water year 1998–1999 for 
J2034010. 
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Fig. 4 Observed & simulated discharge and rainfall for the water year 1998–1999 for 
J3024010. 

 
 

NNM (MOCT) simulated discharge
Catchment J4124420

0.0

0.5

1.0

1.5

2.0

2.5

1/
8/

98

20
/9

/9
8

9/
11

/9
8

29
/1

2/
98

17
/2

/9
9

8/
4/

99

28
/5

/9
9

17
/7

/9
9

D
is

ch
ar

ge
 (c

um
ec

)

0

20

40

60

80

100

R
ai

nRainfall
Sim. discharge
Obs. discharge

 
Fig. 5 Observed & simulated discharge and rainfall for the water year 1998–1999 for 
J4124420. 
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actual input–output transformation process, are found to be generally inferior to that of 
all other models tested. For these catchments, all characterized by substantial 
seasonality in the hydrological variables, both forms of the seasonally-based LPM 
(NP-LPM and P-LPM), significantly outperform the SLM model forms. For J4124420, 
the NP-LPM even outperforms the SMARG conceptual model. The SMARG 
conceptual model, which is intended to reflect the perceived dominant components of 
the physical process of flow generation in lumped form, generally performs better than 
the SLM and the LPM constructs. The performance of the wetness index based 
LVGFM, which utilizes SMARG as the auxiliary model for estimating the time-
varying Gain Factor, is better than that of the SMARG, and hence better than the other 
four above-mentioned system-theoretic models. The ANN structure, however, despite 
being non-parsimonious, performs significantly better than all other models tested on 
the three catchments owing to its complex but flexible nonlinear formulation. Thus, the 
superiority of the ANN models over the conceptual and other system-theoretic types of 
rainfall–runoff transformation models on these catchments is established. 
 Outputs from all basic rainfall–runoff models, used in different combinations in 
MOCTs, are useful for obtaining the best consensus simulation of the observed flows 
whereby strengths of individual models are combined and perceptible weaknesses are 
discarded. In the case of the three test catchments, the simulated discharge obtained by 
such combination shows significant improvement, the performance of the NNM form 
of MOCT being the best. 
 Thus, among the MOCTs, the NNM is found to be the most efficient, establishing 
the overall superiority of the neural network topology in both parts of this study. 
 In future studies, it is planned to carry out tests to obtain lead-time flow forecasts 
of the flows, both with and without updating components, by developing and applying 
models that exploit recent mathematical tools such as wavelets, capable of 
emphasizing localized features, e.g. spikes for flash floods, etc. and the use of the 
NNM to combine radar precipitation estimates and raingauge data as inputs to semi-
distributed catchment models. 
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