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Abstract Rainfall over the Vietnamese central highlands is governed by the 
Asian summer monsoon. The El Niño-Southern Oscillation (ENSO) phenom-
enon and related large-scale circulation anomalies, however, introduce distur-
bances that may lead to drought in the central highlands. Droughts cannot be 
prevented, but the consequences for human livelihood and economic losses can 
be alleviated if better prediction tools become available. Sea surface temperature 
(SST) is an indicator for the ENSO phenomenon and has been used here in an 
effort to develop prediction models for precipitation in the Vietnamese central 
highlands with a lead-time of up to three months. SST in both the Indian and 
Pacific oceans has been related to precipitation by means of canonical 
correlation analysis, a linear statistical technique. The best results were obtained 
for rainfall at the outset and at the end of the rainy season. Nonlinear techniques 
in the form of artificial neural networks (ANN) were subsequently applied. 
Additionally, discharge in three river basins in the central highlands was 
predicted with SST and meteorological variables as predictors. Although local 
effects have a considerable influence in certain parts of the area, reasonable 
prediction results were obtained for both rainfall and discharge. 
Key words  artificial neural networks; canonical correlation analysis; drought prediction; 
ENSO; sea surface temperature  

 
 
INTRODUCTION  
 
The Vietnamese central highlands (VCH) region is located in the southeastern part of 
the Indochina Peninsula. It is embedded in the Asian monsoon system and flanked by 
the Indian and Southeast Asian monsoons (Chen et al., 2000). Water is intensively 
used to sustain livelihood and agricultural production, the most important factor for 
socio-economic well-being in the region. Lack of water affects ecosystems, agri-
cultural production, power generation, livelihood and urban areas, among others.  
 The forecast of monthly summer monsoon rainfall over the VCH is significant for 
planning and management of reservoirs, agricultural practice, and especially for 
drought mitigation. Medium-range planning and management of water resources 
require good monthly or seasonal rainfall forecasts well in advance.  
 Statistical forecast techniques have been rapidly improved over the last two 
decades. Multiple linear regression models have been commonly used for 
hydrometeorological analysis and drought forecasting (Lui et al., 1998; Cordery & 
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McCall, 2000) and Indian monsoon rainfall forecasting (Hastenrath, 1988; Kumar et 
al., 1995). Canonical correlation analysis (CCA) (Shabbar & Barnston, 1996; Uvo & 
Graham, 1998; Ntale et al., 2003) and artificial neural networks (ANN) (Vemuri & 
Rogers, 1994; Uvo et al., 2000) are important methods for establishing linear and 
nonlinear relationships between variables. They have been used successfully to 
forecast field variables (such as precipitation and air temperature) based on other fields 
(such as SST or sea level pressure).  
 Since significant links between ENSO and the Indian monsoon are identified by, 
e.g. Rasmusson & Carpenter (1983), empirical models for monsoon prediction have 
developed rapidly and are available in, e.g. Kumar et al. (1995), Rajeevan (2001). 
Shukla & Mooley (1987) identify Indian monsoon predictors related to ENSO and 
develop statistical models for forecasting summer monsoon rainfall over India. Within 
the framework of these predictors, statistical (Rajeevan, 2001) and ANN models (Sahai 
et al., 2000) have been developed for operational forecasting at the India Meteorolog-
ical Department Monograph Climatology. Recently, Singhrattna (2003) indicates that 
Thailand summer rainfall is strongly correlated with pre-monsoon land-surface temp-
eratures (March to May), which represent the land-ocean thermal gradient. Singhrattna 
et al. (2005) investigate the possibility of predicting the SASM rainfall over Thailand 
from large-scale variables related to ENSO such as SST and sea level pressure. 
 The purpose of this study is to develop statistical linear and nonlinear models to 
estimate monthly rainfall and discharge, respectively, at selected stations over the 
VCH based on SST over the tropical Pacific and Indian oceans, and other, local 
variables. Description of the research region and data are presented in the next section, 
then the methodology applied is described, followed by the results of the forecast 
models and discussion. Finally, the conclusions are drawn. 
 
 
RESEARCH AREA AND DATA  
 
Research area description 
 
The central highlands region comprises approximately five million ha of rugged moun-
tain peaks, widespread forests, and flat plateaus of basaltic land. The highlands account 
for 16% of total arable and 22% of total forested land in Vietnam. The inter-annual vari-
ations of the rainfall are mainly influenced by seasonal winds. The annual rainfall ranges 
from 1500 to 2000 mm, and the rainy season accounts for about 80% of annual rainfall. 
The discharge usually peaks in October and November following massive rainfall. 
 The whole research area is displayed in Fig. 1, with 24 selected gauging stations, 
where 16 stations have rainfall records, five stations are measuring rainfall and other 
meteorological variables such as air temperature, humidity and wind speed, and three 
are hydrological stations for discharge data in the three main rivers: Sesan, Srepok and 
Ba. Sesan and Srepok rivers flow from mountainous areas with average elevation 
ranging from 500 to 1000 m a.s.l., both basins spread over areas in the VCH and Cam-
bodia, and the rivers flow westward toward the Mekong River system in Cambodia. 
The Ba River catchment area is totally located in Vietnam. The river originates at the 
northern mountainous area of the VCH with average elevation ranging from 300 to 500 
m a.s.l., and flows eastward through the lowland to the South China Sea. 

http://en.wikipedia.org/wiki/Arable
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Fig. 1 The distribution of the selected raingauge stations/topography over the central 
highlands, Vietnam. 

 
 
Data 
 
 Precipitation The data set used in Canonical Correlation analysis (CCA) includes 
monthly precipitation from 21 selected gauging stations over the VCH covering the 
period from January 1980 to December 2000. The precipitation data was primarily 
compiled by the National Hydrometeorology Institute of Vietnam. Most of the rainfall 
records are complete, while some have less than 10% missing data. A multiple linear 
temporal regression was used to fill missing data, when the data series contained more 
than 3% of missing data or a full year of missing data. In other cases, missing data 
were filled by inserting the appropriate long term mean. 
 

 Discharge Data sets used as input to Artificial Neural Network (ANN) models are 
monthly discharge at a site in each catchment, Kontum (Sesan catchment), Bandon 
(Srepok catchment) and Cungson (Ba catchment). The data values span the period Jan-
uary 1980 to December 2000 in which the data sets are divided into three subsets, 13 
years for calibration, the next 3 years for checking and the last 5 years for validation. 
 

 SST For the interval of January 1980 to December 2000, the average monthly SST 
were obtained from the Comprehensive Ocean Atmosphere Data Set (COADS) 
(Reynolds et al., 2002) extracted from the data library of the International Research 
Institute for Climate and Society—IRI. Tropical SST data were selected in the Pacific 
and Indian oceans, i.e. 28°N–28°S; 120°E–85°W and 28°N–28°S; 30°E–105°E, 
respectively. The data, available at a 2° × 2° latitude–longitude grid point resolution, 
were transformed to a 4° × 4o latitude–longitude resolution by simple average, and 
were used as input of CCA models. Moreover, meteorological data such as air 
temperature, humidity, wind speed, etc. were also used as ANN model input.  



Tinh Dang Nguyen et al. 
 
 

160 

 All time series were standardized, prior to use, by extracting the long-term mean 
value and dividing by the standard deviation. For ANN models, after standardization 
as suggested by Dawson & Wilby (2001), all data series were transformed to the 
interval (–0.9, 0.9). 
 
 
METHODOLOGY 
 
Canonical Correlation Analysis (CCA) 
 
CCA is a linear multivariate technique. An early version was introduced by Hotelling 
(1935, 1936), and the technique has been used widely in the social sciences since the 
1960s (Bretherton et al., 1992). The technique isolates the linear combination of the 
data from one field and the linear combination of the data from another field that are 
maximally correlated. As simple linear regression, CCA minimizes squared errors in 
hindcasting the predictand from the predictors (Barnett & Preisendorfer, 1987). The 
CCA has been commonly used for both diagnostics (Nicholls, 1987; Díaz et al., 1998) 
and prediction studies (Glahn, 1968; Barnett, 1981; Barnett & Preisendorfer, 1987; 
Barnston & Ropelewski, 1992; Gershunov & Cayan, 2003; Ntale et al., 2003). CCA is 
able to define the highest spatial and temporal evolution of the predictor field that best 
predicts the predictand field. We use CCA to forecast monthly rainfall over the VCH 
during the rainy season using tropical Pacific and Indian Oceans SST as predictors. A 
thorough explanation about how a CCA model is developed can be found in Barnett & 
Preisendorfer (1987). 
 The diagnosis was made by means of CCA to show the temporal and spatial 
evolution in the predictor field that gives the best forecast skill to the predictand field, 
the so-called canonical predictor pattern (g-map). The g-map is the linear combination 
in predictor data that contributes most hindcast skill to the predictand data set. The 
analysis was made from monthly SST two months prior to the monthly rainfall, e.g. 
April rainfall forecast was made from February SST over the Pacific, and November 
precipitation forecast from September SST over the Indian Ocean. 
 
 
Artificial Neural Networks (ANNs) 
 
The ANN ability to imitate the performance of the human brain is well known. 
Conceptually, an ANN is composed of simple elements working in parallel, which are 
inspired by the biological nervous system. Mathematically, ANN is a theorized mind 
model in which the network function is determined by interconnecting elements in the 
system. Thus, a neural network can map a nonlinear complex relationship through a 
training process by adjusting the weights that link interconnected elements in the 
network.  
 ANNs have been used in climate and hydrological sciences during recent years. 
Dawson & Wilby (2001) present a thorough review of the use of ANNs in 
hydrological modelling. Many studies explore the forecasting potential of ANNs, e.g. 
hourly discharge (Deo & Thirumalaiah, 2000), daily discharge (Phien & Danh, 1997; 
Brikundavyi et al., 2002; Cigizoglu, 2004), monthly discharge (Phien & Siang, 1993; 
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Salas et al., 2000), seasonal discharge (Uvo et al., 2000), hourly rainfall (Olsson et al., 
2004), and monthly rainfall (Freiwan & Cigizoglu, 2005). Successful achievements 
were obtained through the studies implying that ANNs can provide good forecast when 
appropriate choices of network types, training methods and data handling techniques 
are identified.  
 

 ANN design The most appropriate design of an ANN is normally found after 
many trial and error tests. In this study, the best accuracy was achieved when using a 
multi-layer feed-forward neural network. The ANN is composed of three layers, one 
hidden layer and one output layer containing one neuron each, and an input layer 
containing as many neurons as the number of input variables. A hyperbolic tangent 
sigmoid transfer function is used for the neurons of the hidden layer and output layer 
in the discharge forecast. The ANN was developed using MATLAB. 
 The mathematical expression of the hyperbolic tangent sigmoid transfer function is 
as follows: 
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where n is input and a is the output.  
 

 ANN training During the training process, the ANN weights and bias factors are 
estimated using the scaled conjugate algorithm. The scaled conjugate algorithm shows 
super linear convergence by using a step size scaling mechanism to avoid time-
consuming line-search per learning iteration, which is assumed to be a sufficiently 
accurate and robust technique to train the network (Moller, 1993). 
 The critical issue in training an ANN is avoiding overfitting, as it reduces its 
capacity of generalization. If too many layers and neurons are used, the network has 
too many free parameters and may overfit the data. In contrast, if too few layers and 
neurons are included in the network, it might not be possible to fully detect the signal 
and variance of a complex data set. Thus, an optimal ANN needs to be designed by 
considering the number of layers and number of neurons in each layer and an 
appropriate transfer function and training technique. The present study adopted a 
stopping rule corresponding to an error between one interaction and the next as small 
as 0.001, or after 300 epochs. In this way overfitting can be avoided so that a 
satisfactory generalization can be reached.  
 

 Model verification The quality of the results obtained from the model verification 
was expressed by the correlation coefficient between observed and estimated values, as 
well as by the root mean squared error (RMSE). The correlation coefficient shows a 
skilful training performance, and the RMSE presents, on average, how close observed 
and estimated values are. The correlation coefficient is defined as the Pearson product-
moment coefficient of linear correlation between two variables. It ranges in the interval 
(–1, 1), where higher positive values indicate better models. Conceptually, the best 
results are obtained by the highest correlation coefficient and the lowest value of 
RMSE. The correlation coefficient and RMSE are mathematically expressed as:  

∑ ∑

∑

= =

=

−−

−−
=

n

i

n

i
iEstiObs

n

i
iEstiObs

YY

YY
coeffCorre

1 1

22

1

)()(

))((
.

βα

βα

          and         n

YY
RMSE

n

i
iEstiObs∑

=

−
= 1

2)(
 



Tinh Dang Nguyen et al. 
 
 

162 

where YiObs, YiEst are the observed and estimated value of point i, respectively; α, β, the 
mean of observed and estimated time series, respectively; and n, the size of the time 
series (number of data points). 
 
 
RESULTS AND DISCUSSION 
 
Precipitation 
 
The results of monthly precipitation forecast based on SST from the Pacific and Indian 
oceans using statistical models are presented in this section. The models were 
developed to estimate monthly rainfall through the VCH rainy season based on 
monthly SST over the Pacific or Indian oceans two months in advance. Table 1 shows 
correlation coefficients between standardized observed and estimated monthly rainfall 
series, where the latter was obtained from cross-validation of the CCA models, at all 
sites studied over the VCH. Correlation coefficients above 0.45 are statistically 
significant at levels >95%, and above 0.53 at levels >99%. For simplification, only 
correlation coefficients for the most skilful combinations of predictor and predictand 
are presented. 
 
 
Table 1 Correlation coefficients between standardized observed and estimated precipitation are obtained 
by cross-validation in CCA models. * and ** indicate correlation significant at >95% and >99%, 
respectively. N, C, and S indicate station in the north, centre and south of the region, respectively. 

SST over Pacific Pacific Pacific Indian Pacific Pacific Pacific Indian 
Precipitation Apr May Jun Jul Aug Sep Oct Nov 
SST in Feb Mar May Apr Jun Jul Aug Sep 
Dakglei (N) 0.21 –0.26 0.27 0.05 0.02 0.28 0.22 0.48* 
Dakto (N) 0.63** 0.08 0.46* 0.29 –0.13 0.35 0.23 0.64**
Trungnghia (N) 0.17 0.12 0.31 0.27 –0.14 –0.03 –0.01 –0.17 
Kontum (N) 0.07 0.18 0.50* 0.23 –0.26 –0.09 0.41 0.61**
Pmre (C) 0.59** 0.33 0.31 0.10 0.23 0.21 0.38 0.69**
Pleiku (C) 0.60** 0.34 0.44 0.23 0.29 –0.21 0.19 0.60**
Ankhe (C) 0.12 0.16 –0.18 –0.07 0.45* –0.21 0.40 0.26 
Chupong (C) 0.52* 0.19 0.37 –0.15 0.21 –0.34 0.13 0.31 
Chuse (C) 0.51* 0.29 0.23 0.00 –0.25 0.04 0.20 0.60**
Ayunpa (C) 0.31 0.00 0.08 0.26 –0.12 0.15 0.36 0.45* 
Krongpa (C) 0.63** 0.12 0.16 0.55** 0.24 –0.33 0.34 0.37 
Bandon (S) 0.09 0.08 0.06 0.21 0.51* 0.07 0.30 0.53* 
Buonho (S) 0.60** 0.40 0.41 0.19 –0.19 0.55** 0.33 0.52* 
Buonmathuot (S) –0.46* –0.05 0.37 0.15 –0.17 0.31 0.47* 0.10 
Krongbuk (S) 0.41 –0.06 0.30 0.45* –0.21 –0.02 0.46* 0.23 
Eakmat (S) 0.58** 0.03 0.05 0.15 0.30 –0.23 0.39 0.47* 
M’drak (S) 0.37 –0.01 0.18 –0.39 0.40 0.16 0.61** 0.29 
Cau14 (S) 0.53* 0.50* –0.25 0.13 0.43 0.30 0.54** 0.50* 
Giangson (S) 0.39 0.12 –0.16 –0.14 0.21 –0.07 0.39 0.49* 
Ducxuyen (S) 0.66** –0.14 0.17 0.23 0.55** 0.52* 0.46* 0.43 
Daknong (S) 0.67** 0.15 0.28 0.05 0.13 0.31 –0.02 0.39 
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 In general, the quality of the results obtained from the cross-validation varies 
spatially and temporally during the rainy season. The best correlation coefficients are 
found for the first and the two last months of the rainy season (April, October and 
November). As can be seen from Table 1, the Pacific SST is a good predictor for April 
rainfall at most sites and for October rainfall at some sites two months in advance. On 
the other hand, Indian Ocean SST is a skilful predictor for November precipitation at 
most sites, also two months in advance.  
 Figure 2 shows the time series of standardized observed and forecasted precipita-
tion in April at some sites, obtained from the CCA cross-validation using the Pacific 
Ocean SST in February as predictor. The correlation coefficient varies from 0.51 to 
0.67. In general, the model reproduces well the variation in the sign of a monthly 
rainfall anomaly. Intensities, however, are normally underestimated. The model 
generates better forecasts for monthly rainfall anomalies during the 1990s for most 
sites of the VCH, but it remarkably underestimates the extreme rainfall anomalies in  
 
 

 
Fig. 2 The time series of standardized observed (solid line) and estimated (dashed 
line) precipitation in April obtained from cross-validation model using SST in the 
Pacific Ocean as predictor. The correlation coefficients between two time series 
presented on the top right of each graph are statistically significant at levels >95%. 
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1996 and 1997 for Pmre (Fig. 2(b)), in 1997 for Cau14 (Fig. 2(i)), Ducxuyen (Fig. 2(j)) 
and Daknong (Fig. 2(k)), and in 1999 for Chupong (Fig. 2(d)). The model is able to 
forecast well rainfall anomalies during the early to middle 1990s for the sites of Cau14, 
Ducxuyen, Daknong in the southern VCH, and from the middle to late 1990s for Dakto 
in the northern and Pleiku and Chupong in the central VCH.  
 For most cases the model cannot reproduce well the intensity of the extreme 
precipitation anomalies, despite the fact that they are mainly associated with ENSO 
events (e.g. 1987, 1992 and 1998). However, it is clear that the model, when using 
SST over the Pacific as predictor, is able to indicate dry or wet conditions at the 
beginning of the rainy season, two months in advance. This information is highly 
valuable for decision-makers in relation to agriculture management, among others. 
 In Fig. 3, time series of standardized observed and forecasted precipitation in 
November at some sites are presented, obtained from the CCA cross-validation using 
Indian Ocean SST in September as predictor. The eight selected stations include two 
sites in the northern (Dakto, Komtum shown in Fig. 3(a), (b)), three in the central 
(Pmre, Pleiku and Chuse in Fig. 3(c)–(e)) and three in the southern VCH (Bandon, 
Buonho and Cau14 shown in Fig. 3(f)–(h)). The best correlation coefficient between 
observed and estimated precipitation is 0.69 at Pmre (Fig. 3(c)) and the worst is 0.50 at 
Cau14 (Fig. 3(h)). Like in the beginning of the rainy season, the model is also able to 
indicate wet or dry conditions at the end of the rainy season, but not its intensity. This 
information, however, is valuable for water management, given that it is provided two 
months before the end of the rainy season. 
 Results obtained for May to October do not possess the same quality as those for 
the beginning and the end of the rainy season. However, some interesting remarks can 
be made. As shown in Table 1, a correlation coefficient of 0.5 between observed and 
forecasted precipitation was obtained at Cau14 for precipitation in May forecasted 
from Pacific Ocean SST in March. In June, correlation coefficients of 0.46 and 0.5 are 
obtained for precipitation at Dakto and Komtum, both located in the northern VCH, 
based on Pacific Ocean SST in May. For July, the best correlation coefficients 0.55 
and 0.45 are obtained for Krongpa and Krongbuk, based on April Indian Ocean SST. 
In August, the best correlation coefficients 0.45, 0.51 and 0.55 are obtained for sites 
located in the centre (Ankhe) and the south (Bandon, Ducxuyen), based on SST over 
the Pacific Ocean two months in advance. In September, the best correlation 
coefficients 0.55 and 0.52 are obtained for two sites in the south (Buonho, Ducxuyen). 
In October, significant results are obtained for five selected stations with correlation 
coefficients varying between 0.46 and 0.61 The best correlation coefficients are 
obtained for the sites Buonmathuot (0.47), Krongbuk (0.46), M’drak (0.61), Cau14 
(0.54) and Ducxuyen (0.46) that are all located in the south of the VCH.  
 Overall, the model using SST in the Pacific Ocean up to two months in advance 
reproduces the sign of the precipitation anomaly, but not its intensity, at most sites in 
the south of the VCH at the beginning of the rainy season. The best rainfall forecasts at 
the end of the rainy season are generated from the model using SST in the Indian 
Ocean up to two months in advance as the predictor, and found at sites confined to the 
north and central VCH. As in previous cases, the model is best in indicating the sign of 
the precipitation anomaly, not its intensity.  
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Fig. 3 The time series of standardized observed (solid line) and estimated (dashed 
line) precipitation in November obtained from a cross-validation model using SST in 
the Indian Ocean as predictor. The correlation coefficients between two time series 
presented on the top right of each graph are statistically significant at levels >95%. 
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field in both oceans that significantly contribute to the rainfall forecast skills. Figure 4 

 
Fig. 4 The first (upper left panel) and second (lower left panel) mode of canonical 
predictor maps associated with April rainfall forecast skill based on February SST in 
the Pacific Ocean. The shading shows the SST areas that contribute most to the 
forecast. The correlation coefficient between canonical components of predictor and 
predictand is shown on the top right of each left figure. The right panel indicates the 
correlation coefficients between standardized observed and estimated precipitation 
obtained from all modes of cross-validation models. The correlation coefficients 
above 0.45 and 0.55 are significant at levels >95% and >99%, respectively. 

 
 

 
Fig. 5 The first (upper left panel) and second (lower left panel) mode of canonical 
predictor maps associated with November rainfall forecast skill based on September 
SST in the Indian Ocean. The shading shows the SST areas that contribute most to the 
forecast. The correlation coefficient between canonical components of predictor and 
predictand is shown on the top right of each left figure. The right panel indicates the 
correlation coefficients between standardized observed and estimated precipitation 
obtained from all modes of cross-validation models. The correlation coefficients 
above 0.45 and 0.55 are significant at levels > 95% and > 99%, respectively. 

 
 
 
 It would be interesting to identify those temporal and spatial evolutions in the SST 
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nfall forecasts obtained 

for November precipitation were obtained from the CCA cross-

ated with large-scale 
tm

presents the first two g-map modes (left panels) of the linear combination of February 
SST over the Pacific Ocean that contributes most hindcast forecast skill to April 
rainfall. The right panel shows the correlation coefficients between standardized 
observed and estimated precipitation by cross-validation of the CCA model based on 
SST over the Pacific Ocean. Correspondingly, the g-map modes of the linear 
combination of September SST over the Indian Ocean that contributes most hindcast 
skill to November rainfall forecasting are presented in Fig. 5.  
 As shown in the right panel of Fig. 4, the best April rai
from the model using Pacific Ocean SST in February as predictor are at sites located in 
the central-west and south VCH, only one site is located in the north of the VCH (right 
panel). The upper left panel in Fig. 4 shows that the first g-map mode explains 
maximally about 50% of variance in April rainfall, whereas the second mode accounts 
for only about 10% of rainfall variance (lower left panel). The correlation coefficients 
in the first g-map mode imply that cold (warm) February SST over the equatorial 
central (northwestern) Pacific (upper left panel) is highly correlated with rainfall over 
the VCH, contributing most to the April rainfall forecast. This is also true for January 
and March SST (not shown). During April, the heavy rainfall over the VCH is mainly 
caused by convective activities. The positive SST anomalies over the northwestern and 
negative SST anomalies in the equatorial central to the eastern Pacific Ocean, 
representing ENSO, could enhance the convective rainfall over the VCH. In other 
words, La Niña increases and El Niño decreases precipitation over the VCH. This 
pattern was also found by, e.g. Lau & Yang (1997), Zhang et al. (2002, 2004) and 
Nguyen et al. (2007).  
 The best forecasts 
validation using Indian Ocean September SST. Warm (cold) SST over the equatorial 
eastern (western) Indian Ocean is highly correlated with the canonical components that 
were used for forecasting rainfall, but it does not contribute much to the November 
rainfall forecast. The left panels in Fig. 5 show the first two g-map modes that explain 
20% of total variance of the November rainfall. The highest values of correlation 
between observed and estimated precipitation are at sites located in the north and the 
southwestern part of the VCH (right panel). In November, the meteorological 
conditions are such that northeasterly winds replace the southwesterly ones (summer 
monsoon). During this month, convective activity is the main cause of rainfall over the 
VCH expressed by positive September SST anomalies in the equatorial eastern Indian 
Ocean that feed the moisture to the convective rain band. This pattern is in agreement 
with the findings of Qian & Lee (2000) and Nguyen et al. (2007). 
 The variations of the rainfall over the VCH are not only associ
a ospheric and oceanic circulations. In particular, the two major mountain ranges in 
the northeastern and southeastern parts of the VCH (the average elevation is 1000 to 
1500 m) play an important role for the rainfall on the lee-side of the mountain ranges. 
The northwestern Pacific and equatorial eastern Indian oceans feed the water vapour 
for the convection that causes precipitation over the VCH through large-scale 
atmospheric–oceanic circulations. The convection is triggered at the lee-side of the 
mountains forming the squall lines that generate the precipitation on the lee-side foot 
of the mountains (Satomura, 2000). This partially explains the spatial rainfall 
variations over the VCH, and also the spatial variability of model skills. 
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he results of discharge forecasts obtained from ANN models are presented in detail in 

able 2 Forecast results obtained from ANN models for discharge in the three studied sites over the VCH. 

Discharge 
 
T
Table 2 and Fig. 6. In general, the models are potentially able to forecast discharge 
over the VCH, with correlation coefficients ranging from 0.78 to 0.88. The models 
cannot catch the discharge peaks correctly. This might be because the inputs to the 
models do not contain enough information about the peaks and the fact that most 
heavy rainfall events over the VCH are caused by storms and typhoons that in a 
complex way are influenced by large-scale circulation. 
 
 
T

Catchment Predictand Input to network Network structure Cor. coeff RMSE 
Srepok Discharge SST2, H1,T1-max,min,mean, n, Q1 7-10-1 0.82 162.6 
Sesan Discharge SST2, H1, T1-max,min,mean, Q1 6-7-1 0.78 51.3 
Ba Discharge SST2, H1, T1-max,min,mean, Q1 6-7-1 0.88 210 
The inputs to mo ature (SST), humidity (H), air temperature (T), 

 
Fig. 6 Forecast results for monthly discharge obtained from ANN models. Left panels 

 the ANN dels are: sea surface temper
sunshine hours per month (n) and discharge (Q). The subscript shows the lag time prior to the forecast. 
The network structure a-b-c indicates the number of neurons in the input-hidden-output layer, 
respectively, and RMSE stands for the root mean squared error. 
 
 

show the training results. Right panels present time series of observed (solid) and 
estimated (dash) discharge during the validation period for sites in three sites, Bandon 
(Srepok catchment), Kontum (Sesan catchment) and Cungson (Ba catchment).  
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 Figure 6 s

ONCLUSIONS 

trong relationships between precipitation over the VCH and SST 

cknowledgments We thank the National Hydrometeorology Institute of Vietnam for 

hows the results of discharge forecast for three sites over the VCH. The 
left panels present results for the training period, and the right panels display the 
validation results. The scattering of the results for the training period indicates that the 
models tend to present well the discharge variability (left panels). This implies that 
drought conditions can be well-predicted in advance. The right panels show the time 
series of observed (solid line) and estimated (dash line) discharge values. Two-month 
lag SST in the El Niño3 area and one-month lag humidity, air temperature and 
discharge are used as input to the models. The time series of observed and estimated 
values are presented in the right panels, and high correlation coefficients are obtained 
for all three catchments over the VCH, 0.82 for Bandon (Srepok catchment), 0.78 for 
Kontum ( Sesan catchment), and 0.88 for Cungson ( Ba catchment). 
 
 
C
 

otivated by the sM
over the Pacific and Indian oceans up to three months in advance, as demonstrated by 
Nguyen et al. (2007), this work has developed predictive statistical and nonlinear 
models using CCA and artificial neural network, respectively, to forecast the monthly 
rainfall and discharge for selected sites over the VCH. 
 The rainfall results obtained from the models for the different sites are of varying 
quality, because the precipitation over the VCH is influenced by local climatic patterns 
as well as the large-scale circulation governing the prevailing winds during the year. 
The local climatic patterns are mainly formed by the south Asian monsoon in 
combination with the topographical conditions in the region. Moreover, during the 
main rainy season, the heavy rainfall over the VCH is primarily caused by cyclones, 
typhoons and other disturbances associated with complex large-scale atmospheric 
circulations, so in this period few significant results could be obtained from the models 
based on only SST. The best discharge results obtained by ANN models are for sites 
where the rainfall is strongly correlated with the large-scale circulation and catchment 
characteristics.  
 The forecasting results for both rainfall and discharge show a very significant role 
in early drought warning over the VCH. Good performance of models for both 
forecasts imply that drought indices generated from rainfall or discharge, or a 
combination, can be presented in advance and be combined with real-time monitoring 
of other hydro-meteorological elements within the region, e.g. water levels in 
reservoirs, lakes and rivers, to provide valuable information on future drought 
conditions to water managers and decision-makers helping them to prepare mitigation 
and response actions.  
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