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Abstract An important tool in flood prediction is quantitative precipitation 
estimation using weather radars. This study focuses on the VRPs (vertical 
reflectivity profiles) obtained from S-Band RHI scans from the Chilbolton 
radar in the UK. The RHI scan consists of several beams, each one elevated at 
an incremental angle. In an RHI scan pixels represent reflectivity with a 
corresponding range and height above the Earth’s surface. The VRP is extrac-
ted by a polar to rectangular transformation. During stratiform rainfall a region 
of enhanced reflectivity associated with echoes from melting snowflakes is 
commonly observed. This region is known as the Bright Band. It is necessary 
to detect the Bright Band region and correct for its presence accordingly. 
However, previous work has shown Bright Band classification to be rather 
problematic. Various AI algorithms are introduced, namely: Naive Bayes, 
Fuzzy Naive Bayes, LID3 (Linguistic ID3), and applied to the Chilbolton data 
set in order to classify Bright Band regions pixel by pixel. Once trained, these 
algorithms have the added value of being computationally very cheap 
compared with current detection models. To estimate class probabilities we 
attempt to discretize data using uniform discretization and use two more 
sophisticated discretization methods—Entropy Minimization Partitioning and 
K-Means Clustering. The algorithms are shown to perform well, especially 
when incorporated with these more sophisticated discretization techniques, 
which result in a reduction in the number of partitions required for discretiza-
tion, which in turn reduces the computational requirements of the algorithms. 
The Naive Bayes algorithms were effective, but attention was focused in 
particular on LID3, a linguistic version of the decision tree induction algor-
ithm ID3. LID3 incorporates uncertainty and fuzziness into its input variables, 
in an attempt to infer a more robust model. In addition LID3 generates 
linguistic rules for the classification of Bright Band at the decision making 
level, which can improve our understanding of the underlying relationships 
between measurements and classes. This work is representative of a number of 
new approaches currently being applied in the Radar Hydrology area.   
Key words  Bright Band; entropy-minimization partitioning; fuzzy naive Bayes;  
K-means clustering; LID3; naive Bayes 

 
 
INTRODUCTION 
 
The quantitative use of radar-based precipitation estimations in hydrological modelling 
for flood forecasting has been limited due to different sources of uncertainty in the 
rainfall estimation process. Some of the factors affecting radar rainfall estimations 
include radar calibration, signal attenuation, clutter and anomalous propagation, 
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variation of the Vertical Reflectivity of Precipitation (VPR), range effects, Z-R 
relationships, variation of the drop size distribution, vertical air motions, beam 
overshooting the shallow precipitation and sampling issues among others (Battan, 
1973; Austin, 1987; Doviak & Zrnic, 1993; Collier, 1996). 
 The VPR is an important source of uncertainty in the estimation of precipitation 
using radars. The variation is largely due to factors such as the growth or evaporation 
of precipitation, the thermodynamic phase of the hydrometeors, or melting and wind 
effects. As the range increases from the radar, the radar beam is at some height above 
the ground, while the radar sampling volume increases and is unlikely to be 
homogeneously filled by hydrometeors. As an example, the lower part of the volume 
could be in rain, whereas the upper part of the same volume could be filled with snow, 
or even be without an echo. This variability affects reflectivity measurements and the 
estimation of precipitation may not represent the rainfall rate at the ground. 
Snowflakes are generally low-density aggregates and when they start to melt they look 
like big raindrops to the radar, resulting in larger values of reflectivities compared to 
the expected reflectivity below the melting layer (Battan, 1973). This phenomenon is 
called “Bright Band” and the interception of the radar beam with melting snowflakes 
can cause significant overestimates of precipitation up to a factor of 5, and when the 
radar beam is above the Bright Band can cause underestimates of precipitation up to a 
factor of 4 per kilometre above the Bright Band (Joss & Waldvogel, 1990).  
 The Bright Band can be seen as the very dark region in RHI (Fig. 1(a)) and PPI 
(Fig. 1(b)) scans. The power reflected back to the radar is related to the rainfall inten-
sity and therefore radar beams striking this melting layer of snow causes overestima-
tion of precipitation (Rico-Ramirez, 2004). Therefore the Bright Band needs to be 
detected and corrected for. In addition to this, when estimating precipitation intensity, 
determining which hydrometeors the beam intersects is crucial to the calculation. 
 This paper applies three AI algorithms to the Bright Band problem. It is hoped that 
these algorithms that learn from example will be able to learn the nonlinear and 
uncertain relationship between the input attributes and their class, and accurately 
classify images pixel by pixel in real time. Naive Bayes, is a very simple and well 
known AI algorithm that is based on Bayes theorem, as well as assuming conditional 
independence between attributes to classify instances. Label Semantics, proposed by 
Lawry (2005), is a framework for modelling with linguistic expressions. Label 
Semantics incorporates the notion of overlapping fuzzy sets and partial membership of 
labels. Label semantics is applied to Naive Bayes and the commonly known decision 
tree ID3. These algorithms are called Fuzzy Naive Bayes (Discrete Version) and LID3 
(Linguistic ID3).  
 
 
DATA 
 
RHI scans from the Chilbolton weather radar have been used for this analysis. The 
Chilbolton radar is operated by the Radio Communications Research Unit (RCRU). It 
is an S-band (9.75 cm wavelength) weather radar developed to study the effects of rain 
on communication systems (Goddard et al., 1994). It is currently the largest steerable 
meteorological radar in the world, with a 25 m diameter antenna, allowing very high 
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Fig. 1 A Typical RHI (a) and PPI (b) scans for a stratiform event. 

 
 
resolution measurements from precipitation particles with a very narrow beam width of 
0.25 degrees and 300 m gate sizes. The Chilbolton radar has a dual-polarization 
capability, which allows the study of the size, shape, phase and orientation of the 
hydrometeors.  
 Our interests are with the vertical reflectivity profiles obtained from S-Band RHI 
scans from the Chilbolton radar (see Rico-Ramirez, 2004; Rico-Ramirez et al., 2005, 
for further details). The measurements obtained are the Reflectivity Factor (Zh), the 
Differential Reflectivity (Zdr), the Linear Depolarisation Ratio (Zdr) and the height of 
the measurement (H0). The estimated Bright Band boundaries can then be determined 

(a) 

(b) 
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by performing a vertical search for the largest differential in reflectivity. The image 
cannot be classified in real time as computations can only be performed once the 
whole image is presented. Ramirez’s rotation algorithm (Rico-Ramirez & Cluckie, 
2007) performs this maximum reflectivity differential search in order to determine the 
estimated boundaries of the Bright Band. 
 
 
THE CLASSIFIERS 
 
The Naive Bayes classifier 
 
Naive Bayes is one of the most simple and well known algorithms in AI. It simply uses 
Bayes theorem and assumes conditional independence between attributes to obtain a 
conditional probability for a class given some input variables. A brief summary is 
presented in this paper. Given the continuous input variables X = x1, …, xn, suppose 
that the output variables are partitioned into classes C = C1, …, Ct, …, CT, where T is 
the number of classes and n is the number of attributes.  
 Now let us consider Bayes’ theorem to determine the probability of the (Ct) given 
an input (X): 
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Now, assuming that each input variable is independent of one another given class (Ct) 
we have an estimation of  )|( XCP t  given by: 
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For our need, classification, we merely need to choose the class Ct with the highest 
value of )|( XCP t . Note that because we are only interested in the relative size of 

)|( XCP t  for each class we can completely disregard the denominator P(X) as it is the 
same value for all classes. 
 
 
The Naive Bayes classifier—continuous or discrete? 
 
As discussed, we will need to evaluate the numerator of equation (2) in order to 
classify instances using Naive Bayes. When estimating )|( tj CxP  there are two 
general approaches, depending on whether the data has been discretized or left 
continuous. For discrete attributes we determine )|( tjr CxP  for each interval and class 
by simply determining the frequency within each discretization given the class and 
dividing by the number of examples belonging to that class. The continuous method 
assumes the numerical values to a have a Gaussian probability distribution. 
Classification is estimated by a probability density function with mean µ and standard 
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deviation θ given by: 
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When analysing the Chilbolton Bright Band data set the probability distribution of all 
four attributes is not strictly Gaussian. In particular, the attribute H0 (height) seems to 
be multimodal. This clearly violates the Gaussian assumption of the density function 
(3) and could introduce inaccuracies if the attribute is important to the overall classi-
fier. Therefore the discretization method is used in place of the continuous method, for 
all of the classifiers in this paper. 
 
 
Discretization 
 
There are numerous ways to discretize an attribute space, the simplest being uniform 
discretization. In uniform discretization each variable is split into a predetermined 
number of bins equally spaced. However, in data sets that are clustered and distributed 
unevenly throughout the input space, we obtain some bins containing a great deal of 
data while others contain almost none. For this reason, in addition to uniform 
discretization, two more sophisticated algorithms are considered, one supervised and 
one unsupervised discretization. Unsupervised discretization methods consider only 
the values of given attributes. Whereas, supervised discretization methods consider the 
values of an attribute space as well as their corresponding class, thereby containing 
discretizations dominated by a particular class, theoretically aiding learning. The 
unsupervised discretization method we will consider is K-Means Clustering and the 
supervised discretization method is Entropy Minimization Partitioning. 
 
 
Label semantics 
 
Label semantics, proposed by Lawry (2005) is a framework for modelling with 
linguistic expressions, or labels such as small medium large. Such labels are defined 
by overlapping fuzzy sets which cover the universe of continuous variables (Qin & 
Lawry, 2004). 
 Consider an example x, in a continuous universe Ω, which is represented by a set 
of linguistic labels },..,{ 1 bLLLA = . Fuzzy set theory introduced by Zadeh (1965), 
considers these labels to overlap and allows x to have partial membership in more than 
one label. In our case we will only allow an element to have partial membership of two 
labels, with 50% overlap of the continuous universe (Fig. 2).  
 Since the labels overlap we cannot define probability distributions for 

},..,{ 1 bLLLA = , as more than one label can be appropriate, for an example x we define 
a set of focal elements corresponding to atomic expressions which are both exclusive 
and exhaustive (see Fig. 3) For example, if LA = {{s},{m},{l}} then there are 8 possible 
atoms of the form s^¬m^¬l, s^m^¬l, ¬s^m^¬l etc. These are represented by focal set 
{{s},{s,m},{m},{m,l},{l} (see Lawry, 2005, for more details). 
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Fig. 2 An example of three uniformly distributed trapezoidal fuzzy sets with 50% 
overlap. 

 
 

 
Fig. 3 An example of a focal set derived from Fig. 2 with focal elements {short}, 
{short,average}, {average}, {average,tall}, {tall}. 

 
 
LID3 
 
The ID3 classifier described by Quinlan (1986) is a very well known and widely used 
decision tree algorithm for data sets with discrete attributes. ID3 builds a decision tree 
from training examples. As the tree is constructed a decision is made at each new node, 
about which attribute it should split on next. The attribute that maximizes the informa-
tion gain (minimizes expected entropy) is chosen. We then iterate to the next node, 
where this process is repeated until the tree is complete. Qin & Lawry (2004) propose 
an LID3 classifier that incorporates label semantics, in an attempt to increase the 
robustness of ID3 leaving it less susceptible to misclassification due to crisp discretiza-
tion. The full details of this algorithm are given in Qin & Lawry (2004). Figure 4 is an 
example of a LID3 decision tree with depth 2, where the focal set on attribute Ldr 
contains the focal elements {low}({l}), {low,high}({l,h}) (notice overlap of label low 
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Fig. 4 A typical LID3 depth 2 decision tree illustrating the attributes Ldr and Height 
and their corresponding Focal Elements. 

 
 
Table 1 Classification accuracies and standard deviations for all models. 

Classification accuracy and standard deviation Classification Technique 
Rain Snow Bright Band Average 

Naïve Bayes (Continuous) 75.4%±0.006 68.5%±0.007 98.6%±0.002 80.8% 
Naïve Bayes (Uniform) 78.2%±0.005 81.9%±0.005 97.5%±0.002 85.9% 
Naïve Bayes (Entropy Minimization) 78.7%±0.010 82.0%±0.005 97.8%±0.008 86.2% 
Naïve Bayes (K-Means) 82.5%±0.005 78.8%±0.004 99.3%±0.001 86.9% 
Fuzzy Naïve Bayes (Uniform) 84.9%±0.008 77.4%±0.004 98.9%±0.001 87.1% 
Fuzzy Naïve Bayes (Entropy Min.) 85.2%±0.005 80.6%±0.003 98.7%±0.001 88.2% 
Fuzzy Naïve Bayes (Uniform) 84.9%±0.004 81.6%±0.002 99.0%±0.001 88.5% 
LID3 (Uniform) 89.4%±0.004 85.2%±0.002 99.3%±0.001 91.3% 
LID3 (Entropy Minimisation) 92.3%±0.002 87.5%±0.002 99.4%±0.001 93.1% 
LID3 (K-Means) 93.5%±0.002 89.0%±0.004 99.4%±0.001 94.0% 
 
 
and high) and {high}({h}). The names of these labels are arbitrary and simply to 
illustrate the notion of focal elements. 
 
 
MAIN RESULTS 
 
A Continuous and Discrete Naive Bayes, Discrete Fuzzy Naive Bayes and a LID3 
classifier were applied to the Chilbolton data set. The data set was separated into 
training and testing data sets using 10-fold cross validation. Discretization was perfor-
med using Uniform, K-means Clustering, and Entropy-Minimisation Partitioning. The 
accuracies for each classifier and discretization method are shown in Table 1. 
 A typical RHI scan is shown (Fig. 5) before hydrometeor classification with LID3 
(Fig. 6). The 3 regions seen in Fig. 6 are rain (lower region), snow (upper region) and 
Bright Band (middle region). Overall LID3 was the leading performer by some margin. 
When discretized with K-Means Clustering, an overall accuracy of 94% was achieved.  
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Fig. 5 Typical RHI scan. 

 
 

 
Fig. 6 RHI scan after LID3 classification. 

 
 
CONCLUSIONS  
 
All three classifiers performed excellently on the Bright Band, regardless of the discre-
tization method used. The classification of snow and rain was rather more challenging 
and varied between classifier and discretization method. The ranking was LID3 > 
Fuzzy Naïve Bayes > Discrete Naïve Bayes > Continuous Naïve Bayes. In terms of 
discretization methods both K-Means and Entropy Minimization Partitioning clearly 
outperformed Uniform Discretization. In addition to this, Entropy Minimization 
Partitioning and K-Means requiring 30% fewer discretizations than the uniform 
method creating a more efficiently partitioned attribute space. This greatly reduces the 
computational expense as well as increasing the robustness of the model with a lesser 
chance of over-fitting.   
 Let us consider our proposal to discretize our data rather than assume a Gaussian 
distribution. We can see from Table 1 that the continuous version of Naive Bayes 
certainly lacked performance compared to the three discretization methods considered. 
This supports our analysis of the data set and demonstrates the downfall of models that 
often assume a Gaussian distribution. 
 We can see from Table 1 that in general, Fuzzy Naive Bayes outperforms Naive 
Bayes. This is because Fuzzy Naive Bayes is less susceptible to misclassification due 
to crisp partitions, and is more robust to noise and heavily overlapping attribute spaces. 
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Notice that LID3 is a far more accurate classifier than the Naive Bayes Methods. This 
is probably due to the Naive Bayes assumption, that each attribute is independent 
given the class. As Zh, Zdr and Ldr are highly correlated, this assumption is not 
completely valid and LID3 is a much more suitable model for classifying Bright Band. 
 Both K-Means and Entropy Minimization Partitioning outperformed Uniform 
classification by some margin, with K-Means improving slightly on Entropy Minimiza-
tion Partitioning. Here unsupervised discretization is favoured to supervised discretiza-
tion and it is worth mentioning that in some cases supervised discretization can lead to 
slight over fitting. This seems to be the case in this instance. Nevertheless Entropy 
Minimization Partitioning should be used in favour of the basic Uniform method.  
 LID3 not only achieved very good classification accuracy, but was able to generate 
rules for the classification of Bright Band. Let us consider the attributes of the 
underlying problem, Zh, Zdr, Ldr and height. When assessing the resulting decision tree 
from LID3, the single most important attribute is Ldr, followed by height for 
classifying Bright Band instances. In many instances the Bright Band is determined 
solely on the Ldr value, where the tree terminates and all other attributes are ignored. It 
is possible to analyse the importance of particular attributes and how they contribute to 
the overall classifier. It is the rule induction and attribute ranking that makes decision 
trees such as LID3 a valuable analytical tool in data mining large databases, such as 
RHI scans to understand further the main properties of the Bright Band phenomenon. 
This is a huge advantage over most machine learning algorithms which are often either 
black box or lack the transparency of LID3.   
 Overall, all the algorithms discussed in this paper have performed fairly well on 
the given Bright Band problem. It is also apparent that the way we discretize 
continuous variables has a very big overall effect on computational expense and more 
general rule generation, as well as classification accuracy. LID3 stands apart from the 
other two algorithms in terms of accuracy and the added property of rule induction. It 
is hoped that this rule generation could be a good analytical tool to learn more about 
the classification of Bright Band, which is still not completely understood. 
 
 
FURTHER WORK 
 
In terms of simply increasing prediction accuracy there is a vast amount of possibilities 
in AI. SVMs (Support Vector Machines), Neural Networks, Bayesian Networks, etc. 
However, there is always the problem of computational complexity on large databases, 
which algorithms like SVMs have suffered from in the past. One method of particular 
interest to the author is machine learning fusion techniques. One example being 
bagging, whereby many models amalgamate their output into a single classification 
(Quinlan, 1986). There is also a more sophisticated version of Naive Bayes known as 
Semi Naive Bayes proposed by Lewis, whereby attributes are grouped so that the 
conditional independence assumption is not violated. 
 In these studies the input space was fuzzified for two of the algorithms. Let us 
consider the output space, classes snow, rain, Bright Band, and our uncertainty on 
these class boundaries. It seems completely viable to fuzzify these, as these class 
boundaries clearly overlap. For instance there are instances with a degree of 
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uncertainty, whether they are rain or Bright Band or both. The problem lies in how we 
overlap these classes. More information is needed about the uncertainty of these 
classes to begin in such a task. 
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