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Abstract This paper presents a methodology for estimating precipitation that 
combines precipitation rates observed by the TRMM satellite with infrared/-
visible (IR/VIS) images by geostationary satellites. The method detects IR 
patterns associated with convective storms and characterizes their evolution 
phases. Precipitation rates are estimated for each phase using IR/VIS and terrain 
information. The approach is shown to improve the integration of TRMM 
precipitation rates and IR/VIS data by differentiating major storms from smaller 
events and noise, and by separating the precipitation regime characteristic of 
each storm phase. Further, the procedure explicitly quantifies the uncertainty of 
the precipitation estimates by computing their probability distribution. The 
methodology was tested in the Lake Victoria basin during the period 1996–1998 
against data from >100 raingauges, showing lower bias and better correlation 
with ground data than commonly used methods, and reproducing the variability 
of precipitation over a range of temporal and spatial scales. 
Key words  convective storms; kriging; Lake Victoria; Nile River; precipitation uncertainty; 
remote sensing 

 
 
INTRODUCTION 
 
In many world regions, remote sensing from satellites provides the only economically 
or physically viable system for measuring precipitation. A major advance in this sense 
has been the deployment of an increasing number of satellites, such as the Tropical 
Rainfall Measurement Mission (TRMM), able to reliably measure rain rates, although 
at a low temporal frequency. Procedures combining this information with the more 
frequent data on cloud dynamics provided by geostationary satellites have notably 
improved the capabilities of remote sensing of precipitation (e.g. Hsu et al., 1999; 
Adler et al., 2000; Joyce et al., 2004). 
 However, despite these advances remote sensing of precipitation is still affected by 
considerable uncertainty, even at coarse temporal and spatial scales (Adler et al., 
2001). Yet, most remote sensing estimates of precipitation provide no information on 
the estimation error. If information is provided, it is normally in the form of the 
estimation mean square error at some spatial and temporal scale. This information, 
however, is not very useful to users who need to aggregate precipitation over larger 
areas and/or periods, or need to assess the uncertainty of the basin hydrological 
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response. To address these needs, we developed a methodology (ProbRain) that 
produces reliable estimates of precipitation and quantifies the associated uncertainty 
over any temporal and spatial scale of interest. ProbRain combines the precise, but 
infrequent, precipitation data generated by the TRMM Precipitation Radar with the 
infrared (IR), visible (VIS), and water vapour (WV) images continuously produced by 
geostationary satellites to provide precipitation estimates at a variety of temporal and 
spatial scales. In contrast to most other merging techniques, the combination of the 
TRMM and geostationary data does not produce a single “optimal” value, but a full 
ensemble of equally probable values that can be used to assess the uncertainty in the 
precipitation estimate. Further, to reduce the precipitation uncertainty, ProbRain uses 
Artificial Neural Networks (ANN) to recognize IR patterns associated with convective 
storms and their evolution phases. Precipitation rates are then estimated for each phase 
based on IR, VIS, WV, and terrain information. 
 
 
AVAILABLE DATA 
 
ProbRain has been evaluated in an area surrounding Lake Victoria that extends from 
28ºE to 37ºE and from 5ºS to 4ºN (Fig. 1). The lake covers roughly the central 10% of 
this region, with mountains up to 5000 m rising east and west of it. The climate of the 
region is equatorial, but elevation and lake influence contribute to moderate 
temperatures all year round. The lowlands in the southern side of the area are 
considerably warmer and drier than the rest of the basin. 
 
 

 
Fig. 1 Distribution of raingauges in the Lake Victoria basin used for calibration and 
validation. 
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 Precipitation is driven mainly by the migration of the Inter Tropical Convergence 
Zone with the related northeast and southeast monsoons, but it is also heavily 
influenced by land–lake interactions and orography. Figure 1 shows the distribution of 
raingauges used for calibration and validation of the procedure (60 gauges during 
1996–1998 and 42 gauges during 1996–1997, respectively).  
 Satellite data included Meteosat digital images in the IR, VIS, and WV bands, 
covering 1996–1999 at half-hour temporal resolution, and TRMM PR data covering 
1998–1999. Satellite data were quality controlled and re-sampled to a common 
0.05º× 0.05º (~5.5º× 5.5 km) regular grid. 
 
 
METHODOLOGY 
 
Identification of convective pixels 
 
It is generally recognized that convective storms feature three distinct phases—
developing, mature, and dissipating—each with a distinct rain regime. Using specific 
relations between cloud characteristics and precipitation for these different phases of 
the convective storm and for different types of storms should yield better precipitation 
estimates. ProbRain uses an ANN to identify the presence and temporal evolution of 
deep convective storms at the pixel level. This was achieved by training the ANN to 
recognize IR sequences from geostationary satellites associated with TRMM-detected 
convective pixels (Fig. 2(a)). The IR patterns associated with strongly convective 
precipitation were representative of the onset of convective storms, thereby providing a 
basis for differentiating the different stages of the storm (Fig. 2(b)). These are defined 
here as the number of time-steps elapsed from the moment the ANN recognizes the 
onset of the storm. Convective storm activity over a pixel terminates when the IR 
temperature returns above 253ºK. The best results (Validation Probability of Detection 
= 0.81, False Alarm Ratio = 0.04, and Area-Weighted Error Score = 0.23) were 
obtained by using 3-hour-long IR sequences (Fig. 2(b),(c)) and an ANN with two 
hidden layers, each composed of six nodes (Fig. 2(a)).  
 
 
Estimation of instantaneous precipitation as a function of observed radiation 
 
ProbRain utilizes a “lookup table” approach similar to those of King et al. (1995) and 
Kurino (1997) for relating IR/VIS/WV/Storm stage data from geostationary satellites 
to half-hourly precipitation rates. The look-up tables used in this research are indexed 
by orography, IR, VIS during daytime or IR-WV during night-time, storm stage, and 
month. The variable IR-IR5×5, where IR5×5 is the average IR over a 5 × 5 pixels sub-
region, is used when neither VIS nor WV data are available. The look-up tables were 
partitioned into contiguous intervals containing at least 150 TRMM PR samples, a 
number deemed sufficient to generate meaningful statistics. In most techniques 
merging IR/VIS and microwave data, these relations are derived from data measured 
during the month preceding the estimate period. In contrast, we develop such relations 
considering contemporaneous data from a multiyear data set, thus increasing their 
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(a) (b) 

(c) 

Fig. 2 (a) Schematic of Multi-layered Feed-Forward Neural Network application for 
convective storm identification; (b) convective patterns; (c) non-convective patterns. 

 
 
resolution in the IR/VIS/Storm-stage space and their ability to represent the variability 
of precipitation patterns. Similarly, we developed these relations aggregating data from 
the entire Lake Victoria area instead of the more typical 1º × 1º or 2º × 2º resolutions. 
On the other hand, we partitioned rain rates according to terrain into four classes 
(<1000 m; 1000< h <2000 m; >2000 m; lake pixels) to better represent the steep 
orography differences that are typical of this region. Figure 3 shows that precipitation 
rates for similar IR, but different storm stage, can vary substantially, with more intense 
rain corresponding to the early stages (developing and mature phases). The calibration 
of the procedure involved the selection of the look-up table resolution and the 
minimum number of samples used for partitioning it. Further, precipitation rates for IR 
above 258ºK or for VIS below 40% albedo were set to zero. 
 
 
Uncertainty characterization 
 
As mentioned in the introduction, one of the main goals in developing ProbRain was to 
provide a complete characterization of the uncertainty inherent in precipitation 
estimates. To achieve this goal, the half-hour precipitation over a single pixel is treated 
not as a deterministic value, but as a random variable with distribution described by 
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Fig. 3 Average precipitation intensity as a function of IR and storm stage. 

 
 
equation (1), as in Bell (1987). Unlike Bell, in ProbRain parameters P0, μLNR, and σLNR 
vary on a pixel-by-pixel basis according to the observed IR/VIS/WV and look-up 
tables illustrated in the previous section.  
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where FR(z) is the cumulative density function of the rain rates; P0 is the probability of 
no rain; and N(ln(z), σLNR, σLNR) is the lognormal distribution of positive rain rates. 
 An ensemble of several hundred precipitation realizations is generated for each 
pixel and each half-hour. The precipitation ensemble for longer periods is obtained by 
cumulating the half-hour precipitation rates pertaining to the same realization. 
Precipitation phenomena are characterized by strong temporal correlation that must be 
reproduced in order to properly account for the precipitation variability over periods 
longer than half an hour. Here, the precipitation distribution parameters at time t 
determined from the satellite-observed radiation are modified according to the same-
pixel precipitation at time t–1 with the procedure described in DeMarchi (2006).  
 Most hydrological applications where remotely sensed precipitation would be 
useful to pertain to areas larger than a single 5 × 5 km pixel, requiring the aggregation 
of precipitation over several pixels. However, correct characterization of the statistical 
properties of precipitation for multiple pixels requires generating a spatially correlated 
random precipitation field. The challenge in integrating the remote sensing information 
in the generation of a spatially correlated random field is that it changes the local 
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unconditional precipitation distribution on a pixel-by-pixel basis. This means that, at 
the very least, the random field to be simulated does not have a stationary mean and 
possibly not even a stationary covariance. 
 In ProbRain the spatial correlation is modelled with a two-step procedure similar 
to that proposed by Barancourt et al. (1992) and by Pardo-Iguzquiza et al. (2006). In 
the first step, a one-threshold sequential indicator simulation with previous means 
discriminates rain/no-rain pixels, while in the second step the precipitation intensity is 
estimated using a Bayesian sequential Gaussian simulation procedure (Deutsch & 
Journel, 1998). The overall precipitation random field is obtained by multiplying the 
results of these two independent steps. As in Fiorucci et al. (2001), the precipitation 
intensity mean and variance is allowed to vary on a pixel-by-pixel basis, while the 
correlation coefficient is assumed to be stationary (DeMarchi, 2006). Precipitation 
probability and precipitation intensity variograms for the two sequential simulations 
were obtained using the entire 1998–1999 data set of TRMM images. 
 
 
RESULTS AND DISCUSSION 
 
Single pixel estimation 
 
Table 1 reports the basin-wide average statistics of the comparison between satellite-
based precipitation estimates and single-gauge data. Correlation is not very high for 
any of the examined techniques, partially because of the poor quality of many gauge 
data and heterogeneity of the application area (DeMarchi, 2006). In spite of this, 
ProbRain features higher correlation and lower bias and MAE than GPI for both the 
calibration and validation data sets. It also performs better than the Adjusted GPI 
(TRMM product 3B42, Adler et al., 2000), even when the latter is adapted to consider 
only the pixels containing raingauges. The representation of the precipitation  
 
 
Table 1 ProbRain single-pixel calibration and validation results with an ensemble of 500 realizations. 

 Calibration 
(1996–1998, 60 gauges) 

Validation 
(1996–1997, 42 gauges)

Comparison with 3B42 
(1998, 48 gauges) 

 GPI ProbRain GPI ProbRain GPI 3B42 ProbRain 
Bias/Gauge 0.75 0.01 0.87 0.04 0.67 0.48 0.01 
CorDay 0.38 0.44 0.41 0.47 0.42 0.41 0.45 
MAEDay 1.57 1.09 1.69 1.13 1.51 1.41 1.10 
C95Day – 0.94 – 0.95 – – 0.94 
Cor10 0.60 0.64 0.63 0.70 0.65 0.63 0.64 
MAE10 0.96 0.55 1.10 0.59 0.89 0.79 0.56 
C9510 – 0.92 – 0.89 – – 0.92 
CorM 0.71 0.73 0.75 0.78 0.75 0.72 0.73 
MAEM 0.84 0.39 0.98 0.43 0.77 0.64 0.41 
C95M – 0.88 – 0.84 – – 0.87 
CorDay (Cor10, CorM): correlation between the average of the estimation ensemble and gauge data for 
daily (10-day, monthly) precipitation; MAEDay (MAE10, MAEM): mean absolute error between the 
average of the estimation ensemble and gauge data for daily (10-day, monthly) precipitation as fraction 
of the average gauge data; C95Day (C9510, C95M): frequency with which gauge data fall within the 95% 
estimate–confidence interval for daily (10-day, monthly) precipitation.  
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uncertainty, on the other hand, is very good at the daily and 10-day level (95% 
Compliance rate >0.9), while somewhat decaying at the monthly level. This is possibly 
due to the limited TRMM data set used to characterize the radiation–precipitation 
relation and temporal correlation. 
 
 
Multipixel estimation  
 
The ability of ProbRain to estimate the mean areal precipitation (MAP) and its 
uncertainty was tested over the 1° × 1° EKJ area on the northern shore of Lake 
Victoria, which features the highest density of gauges in the basin (Fig. 1). Even in this 
area, however, the number of gauges is insufficient for reliably assessing the MAP, 
especially at the daily resolution, for which the number of gauges with consistent data 
is just six and the precipitation spatial correlation is low (DeMarchi, 2006). Thus, we 
compare gauge-measured and satellite-estimated precipitation over all possible 
combinations of gauges in the square. For each combination of gauges, the daily/10-
day/monthly gauge-derived precipitation is computed by aggregating the daily/10-
day/monthly precipitation measured at each single gauge in the combination. On the 
other hand, the satellite-derived precipitation is composed by an ensemble of values, 
obtained by averaging satellite estimates belonging to the same realization of the 
precipitation random field for the pixels containing the gauges. Figure 4(a) shows that 
the satellite-gauge correlation (MAE) significantly increases (decreases) even when 
averaging precipitation over few pixels. The decline in the ability to represent 
precipitation uncertainty when aggregating precipitation over larger numbers of gauges 
is not actually due to the number of gauges in itself, but to the fact that more numerous 
gauge combinations are normally spread over larger areas (DeMarchi, 2006) and is 
caused by the rapid decrease with distance of the average half-hour precipitation 
autocorrelation (Fig. 4(b)). Considering different correlation functions for the large 
storms, which feature extensive areas of uniform stratiform precipitation, and for the 
smaller events would likely improve the representation of the precipitation uncertainty. 
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Fig. 4 ProbRain Multipixel performances for the EKJ area during 1996–1997 with 500 
realizations. (a) Correlation (solid) and MAE/Gauge (dotted); (b) 95%-Compliance  
rate. 
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CONCLUSIONS 
 
ProbRain uses multi-year data sets of contemporaneous TRMM PR and geostationary 
IR/VIS data for improving the detail of the radiation/precipitation relations. This 
approach showed better performances than GPI and AGPI in estimating precipitation 
and can be used for periods in which TRMM data are not available. Further, ProbRain 
consistently characterizes the estimation uncertainty over any area and period of interest. 
The extension of the multi-year data set from 1998–1999 to 1998–2006 and the use of 
the more numerous TRMM TMI data should further improve ProbRain performances by 
allowing increase of the detail of the radiation/precipitation relation. Precipitation 
distributions could be localized in space and time by comparing the multi-year 
unconditional and satellite-measured precipitation mean and variance for similar 
conditions and correcting for the differences using, for example, a Bayesian scheme.  
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