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Abstract The hydrologically and hydraulically relevant variables (e.g. soil 
moisture, flood extent, water stage) and basin characteristics (e.g. topography, 
surface roughness) that can be obtained from radar remote sensing are useful 
for implementing, calibrating and evaluating both rainfall–runoff and flood 
inundation models. To achieve a time continuity that is crucial in monitoring 
applications but cannot be obtained by the sole use of remote sensing 
observations, the information extracted from the discrete Earth observation 
data can be used both as parametric input and as time-varying state and flux 
data in coupled hydrological and hydraulic models. This paper focuses on the 
sequential assimilation of remotely sensed water stages into a 1-D flood 
inundation model (HEC-RAS). Through the integration of radar imagery of 
flood events with high precision digital elevation models, inundation depths 
can be extracted from remote sensing observations. The methodology consists 
of adjusting simulated water surface lines by comparing modelled water stages 
with those that are derived from remote sensing observations, thereby increa-
sing the overall accuracy and reliability of flood predictions at subsequent 
time steps. The potential of the proposed methodology is illustrated by a well-
documented flood event of the Alzette River (Grand-Duchy of Luxembourg). 
Key words  flood inundation modelling; remote sensing; sequential data assimilation;  
Synthetic Aperture Radar, HEC-RAS 

 
 
INTRODUCTION 
 
Despite the physical laws that many models used in operational flood forecasting are 
based upon, most of these models need their parameters to be calibrated using some 
sort of evidence. Calibration of model parameters that are related to physically 
observable properties is criticized by some authors (e.g. Cunge, 2003) but continues to 
be common practice. In operational forecasting applications, optimization of 
predictions rather than consistency remains the driving force in model development. 
Ideally both aspects would go hand in hand, but many practical examples prove the 
opposite, and more consistent models are often achieved at the expense of less accurate 
predictions. In near real-time applications, data assimilation can be considered as an 
approach to obtain more accurate and more consistent models by considering various 
types of measurements that are available at the time of prediction. However, to date, 
mainly discharge measurements are routinely assimilated in hydrological models 
whereas other data sets very often continue to be ignored. Unlike in meteorology 

Copyright © 2007 IAHS Press 



Sequential assimilation of remotely sensed water stages in flood inundation models 
 
 

79

where assimilation techniques are very popular and have led to significant improve-
ments in forecasting, examples of routine data assimilation techniques are rather rare in 
operational flood forecasting. In many basins, a wealth of additional time varying 
forcing and state data would be readily available and could be of use for improved 
forecasting. The objective of data assimilation schemes is to put the model in better 
agreement with observed data whenever new observations become available. If the 
model results match the observations, such additional data sets would nonetheless be 
useful to control the models and allow the user to be more confident about model 
predictions. Aubert et al. (2003), among others, showed that real-time soil moisture 
measurements along with discharge measurements allowed substantial improvement of 
runoff predictions at subsequent time steps. The present paper intends to use remote 
sensing observations of flooded areas as an additional data source to support flood 
modelling. Assimilation of remotely sensed soil moisture in hydrological models, 
although not yet used operationally, has provided promising results in several studies 
(François et al., 2003; Matgen et al., 2006). However, methodologies to sequentially 
assimilate remotely sensed water stages in flood inundation models have, to the 
authors’ knowledge, not been presented yet. Although the frequency of image 
acquisition has significantly improved in recent years due to new satellite constella-
tions and new sensors, remote sensing data will always be restricted to the acquisition 
of a discrete image of an area of the Earth’s surface. Hence, the continuity in time that 
is needed in most monitoring applications requires the integration of remote sensing 
information with models.  
 Most papers in recent literature, which evaluate the benefits that are to be gained 
from the use of remote sensing observations in support of flood modelling, focus on 
the extraction of flood outlines from SAR images and aerial photography. Although 
there is no doubt that remotely sensed flood outlines are useful for model 
implementation and calibration (Horritt, 2000; Romanowicz et al., 2003; Matgen et al., 
2004) one may wonder whether remotely sensed flood stages would not provide more 
efficient constraints that would in turn ensure improved flood predictions. Werner et 
al. (2004) and Hostache et al. (2005) argue that water stages are more useful than flood 
outlines for model calibration. In fact, on many flood plains, beyond a certain inflow 
magnitude, the area of flooding does not change significantly with increasing water 
stages. Surprisingly few attempts have been made to estimate flood stages by 
combining detailed DEMs with flood outlines, among which the promising results 
obtained by Raclot (2006), Matgen et al. (2006) and Schumann et al. (2007) are worth 
mentioning.  
 This paper deals with the attempt to develop a framework that allows for the 
sequential updating of flood inundation models using distributed water stages obtained 
from remote sensing. 
 
 
STUDY AREA AND AVAILABLE DATA 
 
The study site on the Alzette River, Grand-Duchy of Luxembourg, is located 
downstream of Luxembourg City between the gauging stations at Steinsel and Mersch. 
The Alzette is a tributary of the Sure River, which is a tributary of the Mosel River. At 
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the upstream boundary of the studied reach, the Alzette drains an area of 404 km2. The 
river flood plain between the two gauging sites is relatively large and flat, with little 
villages straddling the valley floor. The presence of infrastructure such as railway lines 
and roads constrains the flood plain area on both sides. The reach under consideration 
is 10 km long with a flood plain having an average width of approximately 300 m. The 
reach includes four continuously recording gauging stations. Those located at the inlet 
and outlet of the studied reach (Steinsel and Mersch) serve as boundary conditions in 
the hydrodynamic model and the two intermediate ones (Hunsdorf and Lintge) enable 
the monitoring of the propagation of flood waves. Two well documented flood events 
recorded in January 2003 and March 2006, respectively, were used in this study. 
 
 

 
Fig. 1 Observed inflow hydrographs for the calibration and assimilation events. The 
figure also shows the timing of the field measurements that were used for model 
calibration and of the remotely sensed evaluation data, which are available to test the 
sequential assimilation scheme.  

 
 
 The March 2006 data set is considered for model calibration, whereas the January 
2003 flood is used to assess the potential of the proposed sequential assimilation 
scheme based on remote sensing. During the two events, the most upstream gauging 
station recorded the hydrographs shown in Fig. 1. The extent of the January 2003 flood 
was captured at two different times by the SAR instruments onboard the ERS-2 and 
ENVISAT satellites. Also, numerous GPS reference points of the maximum flood 
extent were collected and for both events eight evenly distributed high water marks 
were surveyed. More detailed information on the study area and the available data sets 
can be found in Pappenberger et al. (2006). 
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MODEL SET-UP AND CALIBRATION 
 
Within the study area, one dimensional hydrodynamic codes (Matgen et al., 2004; 
Pappenberger et al., 2006) as well as quasi 2-D storage cell models (Pappenberger et al., 
2007) have been successfully applied for modelling flood wave routing and studying 
flood levels at the river reach scale. In this study, the widely used one dimensional (1-D) 
HEC-RAS model is used for river flow computations. HEC-RAS allows performing 1-D 
steady and unsteady flow calculations. As for the river reach under study the direction of 
flow is mainly along channel, the 2-D flow field that is typically related to riverbank 
overtopping can be approximated by a 1-D representation (i.e. velocity components in 
directions other than that of flow are not accounted for). The Unsteady Network Model 
UNET, which is part of HEC-RAS, solves the full 1-D St Venant equations for unsteady 
open channel flow. The hydraulic resistance is based on the friction slope from the 
empirical Manning’s equation. The 1-D hydrodynamic model, contrary to the more 
computationally intensive storage cell models and 2-D hydrodynamic models, allows for 
a rapid evaluation of spatially and temporally distributed water levels and is thus well 
suited for operational flood forecasting applications. On the Alzette River reach, the 
channel and flood plain topography is represented by the geometry of 74 cross sections 
perpendicularly placed to the direction of flow. The calibration parameters are the flood 
plain and channel roughness. Various methods are available in the literature to estimate 
Manning’s n roughness value based on field observations and measurements. However, 
effective parameters obtained via model calibration usually account for the heterogeneity 
at the model grid scale (i.e. compound effect of texture and vegetation cover between 
cross sections) and compensate for errors in boundary conditions and model structure, 
meaning that calibrated model parameters very often vary considerably from roughness 
values estimated from field observations. An additional problem is that channel 
roughness is known to vary with flow velocity. Thus, with a single set of parameters, 
most hydrodynamic models cannot accurately compute water surface lines over the 
entire reach and for every possible boundary condition. 
 

 
Fig. 2 Agreement of fit between the modelled and observed water stages (March 2006 
flood). High water marks were surveyed at two distinct moments of the flood.  
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 The objective function that was used to calibrate the model was the sum of mean 
squared errors between modelled and observed water stages at two different instants of 
the March 2006 flood event. Eight evenly distributed water stages were surveyed at 
peak discharge and during recession. In total, 5000 model runs with randomly chosen 
channel and flood plain roughness coefficients were generated. The parameter set that 
gave the highest performance measure was retained with channel and flood plain 
Manning n values of 0.033 and 0.077 and a mean squared error of 0.23 m (Fig. 2).  
 
 
SEQUENTIAL ASSIMILATION OF REMOTELY SENSED WATER STAGES 
 
Remote sensing of water stages 
 
Hydraulically relevant information needs to be extracted from satellite imagery prior to 
sequential updating of flow routing models. This information may then be used to 
evaluate and eventually improve hydrodynamic models. Therefore, a spatially distrib-
uted water surface line that may be compared to that simulated at the time of image 
acquisition needs to be extracted from a single remote sensing scene. To obtain 
inundation depth from remote sensing, a procedure outlined in Matgen et al. (2006) 
and further improved by Schumann et al. (2007) was adopted. The procedure is based 
on an integration of remotely sensed flood boundaries with high-precision topographic 
data. Using histogram thresholding on a geo-rectified SAR image, a distinction 
between flooded and non-flooded area is obtained. For each river cross-section that is 
defined in the hydrodynamic model, water elevation data is extracted from a LiDAR-
DEM at the land-water contact zone. Water levels derived from remote sensing 
observations are known to be uncertain. Sources of uncertainty include geo-coding 
inaccuracies due to a lack of easily identifiable ground control points, a coarse image 
ground resolution and terrain geometry causing abrupt changes in slope at the edge of 
most flood plains. Moreover, flood area detection may be hampered by wind roughen-
ing the water surface, and volume scatter caused by protruding vegetation. Schumann 
et al. (2007) demonstrated that regression analysis performed on the extracted water 
stages provides high-resolution 3-D flood information that is useful for near-real time 
flood hazard management. However, it is sensible to argue that this simplified steady-
state SAR-based model cannot substitute physically-based models that are based on 
the solution of the full St Venant equations for hydrodynamic flow. It can be expected 
that hydraulic model outperform simplified remote sensing-based models due to their 
ability to account for processes such as backwater effects that dominate flow behaviour 
locally (Schumann et al., 2007). In an assimilation framework it would be fundamen-
tally wrong to force complex models towards simplified linear models. Nevertheless, 
integrating binary flood maps extracted from remote sensing with high precision 
topographical information may still provide useful data for model evaluation.  
 Given the argument above, uncertainties of the remotely sensed water surface line 
need to be considered and the model should only be corrected where the simulated 
water stage falls outside of the uncertainty interval of the radar-derived water surface 
lines. Of course, using uncertain remote sensing observations, a well-calibrated 
physically-based model should only be corrected where there is a high probability of 
the model being in error. Thus, the objective is to derive an interval of likely water 
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stages at each cross section from remote sensing imagery, rather than getting a best fit 
to the observed data in the sense of a least squared error. At the land–water boundary 
on both sides of the river channel, minimum and maximum remotely sensed water 
stages are determined inside a buffer encircling the intersection point between flood 
boundary and river cross section. The size of the buffer corresponds to three pixels (i.e. 
37.5 m) to account for positioning and flood delineation uncertainties. The interval 
given by the minimum and maximum water stage values implicitly represents 
uncertainty in remotely sensed water stages (Hostache et al., 2005). Further, a land 
cover map is used to mask out areas where accurate flood area detection may be 
hindered by buildings and vegetation cover.  
 
 

 

(a) 

(b) 

Fig. 3 Maximum and minimum water stages derived from ERS SAR (a) and 
ENVISAT ASAR (b) images acquired at two distinct moments of the January 2003 
flood. The initial estimate of the water stages and the subsequently adjusted water 
surface line are also depicted. 

 
 
 Wide bands of uncertainty probably bracket model predictions at any time and at 
any place, meaning that no correction or additional information can be obtained from 
remote sensing. To render remote sensing observations useful for integration with 
hydraulic models, reduction of remote sensing uncertainty is of paramount importance. 
A significant reduction of uncertainties is achieved through verification of 
hydraulically coherent water flow (i.e. water height should decrease in a downward 
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direction). An iterative algorithm (Raclot, 2006) that adjusts hydraulically incoherent 
water stages is therefore applied on the initial water stage values to guarantee a 
consistent downward trend of the water surface line. In a 1-D modelling approach, the 
preferential flow direction is along the stream centreline. The method is applied to the 
ENVISAT ASAR and ERS-2 SAR images acquired during the 2 January 2003 flood 
(Fig. 3). Also, improved sensors and high accuracy DEMs more readily available in 
the near future may considerably help further reduce remote sensing water stage 
uncertainties. 
 
 
Sequential assimilation  
 
There are three possible ways to integrate remote sensing observations with flood 
inundation modelling: (i) as parametric input data, including the geometrical 
description of river channels and flood plains; (ii) as evaluation data to calibrate 
distributed model parameters, such as channel and flood plain roughness that are 
difficult to measure directly; and (iii) as time varying state data, such as water storage 
within the channel, to improve model predictions. This paper focuses on the latter. In 
fact, conceptually, sequential state updating is preferable to sequential parameter 
updating because parameter updating would violate a basic principle of physically-
based modelling, namely that the constants should stay constant while the variables 
vary (Kirchner, 2006). The previous section outlined a way to process radar images in 
such a way as to allow commonly used flood inundation models to work with the 
retrieved information. The state of the model that represents the storage of water in the 
channel and flood plain is verified and updated whenever a remote sensing-based 
estimate of the water surface line becomes available. The method is based on the 
assumption that a better simulation of the model state at time step j will improve the 
accuracy of the model predictions at time steps j + 1, j + 2, etc. (Aubert et al., 2003). 
As pointed out by Walker (1999), there is the challenge to merge the high temporal 
resolution of—generally rather poor—model predictions with the spatially compre-
hensive but limited remote sensing observations to yield the best possible model 
predictions. The method consists in allowing the model to give a first estimate of the 
“true” water surface line. This model estimate is then compared to the remote sensing-
based estimate. The latter is represented by an uncertainty band that should ideally 
bracket the “true” water surface line. At each cross section where the model estimate 
of the water level is located outside this uncertainty band, the modelled line is adjusted 
in such a way that the uncertainty interval constrains the water surface line over the 
entire river reach. Next, the model is re-initialized with the adjusted water surface line. 
After the model is conditioned on the observed data, it evolves again freely until the 
next observation becomes available. Since abrupt static forcing of the model may lead 
to numerical instabilities, only every third cross section was updated with the remotely 
sensed water level. This gives the model enough flexibility to adapt to the constraint. 
The approach was tested with the two radar images acquired during the January 2003 
flood on the Alzette River. 
 Figure 3 shows that at most cross sections the model estimates of water stage are 
indeed inside the uncertainty interval obtained from remote sensing. One may argue 
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that, in this particular case, deriving water stages from SAR was not worthwhile. 
However, the fact that model estimates mostly lay within the range of pre-defined 
observation uncertainties, confirm the suitability of the selected model structure and 
parameters. Hence the modeller can be more confident about model results. Although 
the modelled water surface line is satisfactory at most cross sections, there were still 
minor adjustments to be made at the upstream section and on two limited stretches 
located in the middle part on the studied river reach. Moreover, the adjustments prove 
to be more significant for the ERS imagery than for the ENVISAT image. 
Investigating the reasons why the water surface line computed by the calibrated model 
needed to be adjusted is highly speculative and beyond the scope of this paper.  
 
 
RESULTS  
 
In order to quantify the efficiency of the assimilation procedure, the simulated water 
stages at the intermediate bridges in Hunsdorf and Lintgen are compared to recorded 
stage hydrographs. Moreover, simulated maximum water stages are compared to the 
set of eight different measurements of the maximum water level. The former allows 
evaluating the model’s ability to compute the propagation of a flood wave, whereas the 
latter allows assessing the model’s performance in accurately computing spatially 
distributed water stages along the stream channel. Both performance measures are 
computed for the model with and without assimilation. The model is re-initialized with 
the remote sensing-based estimates (extracted from ERS and ENVISAT images) of 
water stages at the time of image acquisition. As the calibrated flood inundation model 
performs reasonably well even without assimilation, model improvement is bound to 
be minor. 
 Indeed the effect of the assimilation is hardly observable in absolute values and 
can only be evaluated by computing the error between the observed and simulated 
stage hydrograph (Fig. 4). The assimilation effect is very similar at both bridges, 
therefore only the one obtained at the bridge in Hunsdorf is depicted in Fig. 4. The 
integration of the water surface line that was adjusted based on the water stages 
derived from the ERS image reduces the difference between modelled and observed 
water levels by 23 cm. However, the effect of improvement fades rapidly at subsequent 
time steps. One, two and three hours after image acquisition, the error is reduced by  
18 cm, 8 cm and 3 cm, respectively. The simulated stage hydrographs overlap again 
only 4.5 hours after the actual ERS image acquisition. At the time of acquisition of 
ENVISAT the difference between the observed stages at the two bridges and the ones 
those computed with the calibrated model is only 3 cm. With the integration of the 
adjusted water surface line this difference increases to 6 cm, meaning that the model 
performance is deteriorated. Again, the two lines get closer at subsequent time steps 
and completely overlap as soon as 2 hours after image acquisition. When compared to 
the surveyed high water marks, it turns out that remote sensing did not help increase 
model performance. The mean squared error with and without assimilation is 25 cm. 
The peak discharge occurred 3 hours before the acquisition of the ENVISAT image, at 
a time when the integration of the adjusted ERS water surface line did no longer have 
any impact on model results.  
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(a) 

(b) 

Fig. 4 (a) Simulated water stages with and without data assimilation. The vertical line 
depicts the timing of the remotely sensed assimilation data. (b) The figure also shows 
the error between simulated and observed water stages with and without data 
assimilation. 

 
 
 
DISCUSSION AND CONCLUSION 
 
The following conclusions can be drawn from the case study of the January 2003 flood 
on the river Alzette. First of all, it has been demonstrated that the information content 
of radar flood images can lead to improved flood inundation modelling in an 
operational flood forecasting framework. However, the value of the remote sensing 
information decreases rapidly. As a matter of fact, the time efficiency of data 
acquisition and processing determines to a large extent the usefulness of remotely 
sensed information. It has been shown that several hours after image acquisition the 
remote sensing observations did no longer provide any substantial improvement of the 
flood forecasting system. On larger basins, with less steep rising limbs and recessions, 
the information content of remote sensing observations may well be valid over longer 
time periods. This study also showed that there is a risk of degrading model 
performances by considering uncertain flood information obtained from remote 
sensing. Hence, continued efforts should be made to reduce uncertainties of remotely 
sensed flood stages. Not only does a well-calibrated model compute water surface lines 
that lie inside the uncertainty interval of remotely sensed water stages, thereby 
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rendering the use of remotely sensed flood stages relatively ineffective, but also the 
risk of deteriorating model performances by integrating uncertain water stages would 
decrease. New SAR sensors with improved polarization modes, incidence angles and 
wavelengths better suited for flood area detection can be expected to further reduce the 
uncertainty of remotely sensed water stages, thereby increasing the potential use of 
remote sensing in operational flood forecasting. Also, highly accurate DEMs are 
becoming more readily available at larger scales and should allow determining water 
stages more accurately.  
 This research study is ongoing and will further investigate the potential use of 
remotely sensed water surface lines for sequential assimilation in flood inundation 
models. Although this seems to have been largely confirmed by the presented case 
study, major doubts remain about the acquisition of remote sensing imagery in near 
real time to be integrated with hydrodynamic models. Improved temporal sampling 
and, most of all, fast image acquisition and processing, are needed if SAR imagery is 
to be used to update flood inundation models in an operational mode. Also, special 
emphasis needs to be put on the constraining of uncertainties of remotely sensed water 
stages. Finally, the development of more sophisticated assimilation techniques may 
further enhance the use of Earth Observation data in operational forecasting systems. 
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