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Abstract The use of Earth Observation data to retrieve biophysical parameters 
of the land surface such as Leaf Area Index has proven to be useful in many 
operational tools to repetitively gather information at spatial and temporal 
resolutions suitable for agricultural applications. The main objective of this 
work is to exploit the rich information content of CHRIS/PROBA data, in both 
directional and spectral domains, to estimate LAI. Inversion of a canopy 
reflectance model was performed and results compared, in terms of accuracy 
and operational practicability, to a more empirical approach. Results show that 
the directional information content improves LAI estimation for two out of 
three of the analysed crops. For the best case (corn), a RMSE of 0.4 was 
achieved by using 5 angles and 62 spectral bands with an improvement of 
almost 65% relative to 1 angle and 17 bands. Finally, the accuracy of the LAI 
estimates for the two approaches was demonstrated to be comparable. 
Key words  CHRIS/PROBA; LAI retrieval; model inversion; multi-angular imagery; SPARC; 
vegetation index 

 
 
INTRODUCTION  
 
Water managers and irrigation engineers need to have accurate and precise estimates 
of evapotranspiration (ET) to make decisions on water allocation and to design 
irrigation infrastructures. Currently, the most used approach for estimating ET is the 
so-called “Kc ETo” methodology suggested by the Food and Agriculture Organization 
(FAO) (Jensen, 1990; FAO, 1998). In order to apply this methodology operationally it 
is necessary to have accurate measurements of weather parameters (wind speed, air 
temperature, humidity, solar radiation) as well as accurate estimates of vegetation 
characteristics such as canopy surface albedo, crop height and Leaf Area Index (LAI). 
Earth observation data are definitely a cost-effective source of information to retrieve 
vegetation parameters required for Kc calculation over both spatial and time scales. 
 Two main approaches were used to estimate LAI from reflective optical 
measurements (Verstraete et al., 1996): (1) based on empirical–statistical relationships 
between LAI and vegetation indices; and (2) on the inversion of canopy reflectance 
models (CRM)  
 Most vegetation indices combine information in two spectral broad bands: in the 
red (R) and near-infrared (NIR) wavelength region. Despite the large effort in imp-
roving the performance of such empirical formulas, they still present limitations since 
they are site and sensor specific, and they require a reliable ground reference data set 
for calibration and saturate quickly, becoming insensitive to variations of LAI at high 
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LAI-values (Curran, 1994; Gobron et al., 1997). Moreover, vegetation indices do not 
take into account that the canopy reflectance depends on the canopy geometry (leaf 
angle distribution, leaf distribution, row orientation, and spacing), leaf and soil optical 
properties, sun position and view observation (Huete, 1987; Bacour et al., 2002). 
 Alternative approaches based on the inversion of canopy reflectance models 
(review in RAMI, Pinty et al., 2000) represent a challenging opportunity for the 
estimation of LAI from remotely sensed data with high dimensionality, both in the 
spectral and the directional domains. On the one hand, they better characterize the 
anisotropy of the surface reflectivity and exploit the full spectrum obtained by multi-
angular and hyper-spectral sensors. On the other, the parameter retrieval performance 
depends on both the inversion algorithms (Kimes et al., 2000) and the model accuracy. 
 Furthermore, the inversion of CRM is by nature an ill-posed problem, since 
different model parameter combinations may produce almost identical spectra (D’Urso 
et al., 2004a). Different methodologies can be found in literature for the regularization 
of this problem (review in CROMA, 2000; Atzberger, 2002, 2004; Combal et al., 
2002). The main objective of the paper is to exploit the rich information content of 
CHRIS/PROBA data, both in the directional and spectral domains, to estimate LAI. 
For this purpose, inversion of a CRM was performed and results compared in terms of 
accuracy and operational practicability, to a more empirical approach. 
 
 
SATELLITE AND GROUND DATA 
 
The data used in this study were acquired in the context of the first ESA Spectra 
Barrax Campaign (SPARC) (Moreno et al., 2004). Satellite and ground measurements 
were collected over Barrax (N30°3′, W2°6′), an agriculture test area situated within La 
Mancha region in the south of Spain, from 12 to 14 July 2003. The area has been a 
favourite location for agricultural research for many years due to its flat topography 
(elevation differences ranging only 2 m) and to the presence of large and uniform 
vegetation fields (e.g. alfalfa, corn, sugar beet, onions, garlic, potatoes), with LAI 
ranging from 0.5 to 6.5. For this study, 32 samples of alfalfa (9), corn (15) and potato 
(8) were considered. During the campaign a large amount of ground measurements of 
LAI, leaf chlorophyll, water and dry matter content were carried out, together with 
other complementary data. A total of five hyper-spectral and multi-angular 
CHRIS/PROBA images were acquired for this period as well. 
 
 
Satellite data 
 
For this study, we worked on a set of five hyper-spectral consecutive CHRIS/PROBA 
images collected on 14 July 2003 at 11:30 h GMT, at five different view angles, during 
a single orbital pass. These images (“A1”, “A2”, “A3”, “A4”, “A5”) were acquired in 
Mode-1 with a spectral resolution of 62 bands over the visible/NIR bands from 400 to 
1050 nm, with a spectral sampling interval ranging between 1.25 (at 400 nm) and  
11 nm (at 1000 nm) in a spatial resolution of 34 m (see satellite handbook for more 
details). The acquisition geometry for the images is shown in Table 1. 
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Table 1 CHRIS/PROBA acquisition geometry. 

Geometry Satellite acquisitions 
  A1 A2 A3 A4 A5 
VZA    57.2   42.4   27.6   42.5   57.4 
VAA 353.7 339.4 285.2 231.2 216.9 
SZA   19.8     
SAA 148.3     
VZA and VAA: View Zenith and Azimuth Angles; SZA and SAA: Sun Zenith and Azimuth Angles. 
 
 
 The image closer to nadir, “A3”, was acquired with a view zenith angle of 27.6°. 
Radiometric calibration, atmospheric and geometric correction of CHRIS imagery was 
performed by the Department of Thermodynamics, University of Valencia. Since 
important calibration problems were reported in several CHRIS channels, a dedicated 
atmospheric correction algorithm was applied along with radiometric calibration, 
without the need for any ancillary data (Guanter et al., 2005). 
 
 
Ground measurements 
 
During the SPARC campaign, a large amount of ground measurements of LAI, leaf 
chlorophyll, water and dry matter content ground measurements were collected in the 
Barrax study area (Fernández et al., 2005) 
 Field non-destructive measurements of LAI and Mean Tilt Angle (MTA) were 
made by means of the digital analyzer LI-COR LAI-2000 (LI-COR, 1992); the 
manufacturer’s recommendations were followed in deciding sampling strategy. In 
order to reduce the effect of multiple scattering on LAI-2000 measurements, the 
instrument was only operated near dawn and dusk (06:30–09:30 h; 18:30–20:30 h) and 
under diffuse radiation conditions, using one sensor for both above and below canopy 
measurements. LAI values are the result of averaging 24 individual measurements 
taken randomly within an area of approximately 15 × 15 m2 (Elementary Sampling 
Unit, ESU). In order to prevent interference caused by the operator’s presence and the 
illumination condition, the sensor field of view was limited with a 180° view-cap. Both 
measurements were azimuthally oriented opposite to the sun azimuth angle. 
 Measurements of dry matter and water content were also carried out on three 
samples per ESU. Each sample was weighed within a few hours and digital 
photographs of the leaves were taken over graph paper for the calculation of the leaf 
area. Samples were dried at 70ºC, until constant weight was reached, and then 
reweighed. The leaf chlorophyll content was measured with the CCM-200 Chlorophyll 
Content Meter (Gandia et al., 2005). 
 
 
METHODOLOGY  
 
For the purpose of this study, two well known reflectance models were used: the 
PROSPECT model (Jacquemoud et al., 1990) for the simulation of the leaf reflectance 
and transmittance, and the one-dimensional canopy reflectance model SAILH 
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(Verhoef, 1984, 1998), adapted to take hotspot effects and multiple scattering in the 
canopy into account (Kuusk, 1991). The combination of these two algorithms, 
indicated here as the PSH model, was selected on the basis of results from the RAMI 
experiment (Pinty et al., 2000) and tested in forward mode. Comparison between 
model output and CHRIS data showed satisfactory results (D’Urso et al., 2004a,b). 
 To understand the contribution of directional information in LAI estimation, the 
PSH model was inverted by using one, three and five view angles. In order to reduce 
redundancy in the spectral domain, the experiment was initially performed with the full 
set of 62 CHRIS bands. The procedure was repeated with 17 bands (according to the 
results of previous literature (Thenkabail et al., 2004), and finally with 4 bands, similar 
to Landsat-TM spectral configuration. 
 To compare the physical approach based on the PSH model with an empirical 
method using vegetation indices, the relationship between the Weighted Differences 
Vegetation Index and LAI (CLAIR model, Clevers, 1989) was tested. The view-angle 
closest to nadir (“A3”) in the red (24) and infrared (42) bands was considered. The 
CLAIR model was calibrated by using ad-hoc ground-measured LAI values taken at 
the time of a CHRIS/PROBA overpass. For each of the experiments, the LAI accuracy 
is evaluated in terms of root mean square error (RMSELAI) and relative percentage 
error (RPELAI). 
 
 
The PROSPECT and SAILH Models 
 
The SAILH model (Verhoef, 1984, 1998) assumes the canopy as a horizontal, 
homogenous and infinitely extended vegetation layer (turbid medium), made up of 
Lambertian scatterers (leaves) randomly distributed within the canopy. The radiative 
transfer equation is solved by the four-stream approximation method: ascending and 
descending fluxes of direct and diffuse radiation are considered.  
 The SAILH model requires few parameters such as single leaf hemispherical 
reflectance and transmittance (ρ, τ), leaf area index (LAI), average leaf angle (ALA), 
geometric parameters (the solar zenith, the view zenith angles and the azimuth angle 
between sun and observer, hotspot parameter (hot), introduced by Kuusk (1991), the 
fraction of diffuse radiation (Esky) and soil hemispherical reflectance (αsoil). A 
reflectance factor (αsoil) was introduced to scale the mean measured soil spectrum 
accounting for variances in soil brightness.  
 The PROSPECT model (Jacquemoud et al., 1990) provides the leaf hemispherical 
reflectance and transmittance to the SAILH model as a function of the leaf structural 
parameter (N), the leaf chlorophyll a + b concentration (Chla+b), the equivalent water 
thickness (Cw) and the dry matter content (Cm). 
 
 
The CLAIR Model 
 
The CLAIR model (Clevers, 1989) is based on the logarithmic relation between LAI 
and the WDVI. It assumes that all parameters are constant, except LAI and soil 
brightness: 
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where α* is an extinction coefficient, expressing the increase of LAI for a unitary of 
WDVI. It has to be estimated from simultaneous measurements of LAI and WDVI. 
WDVI∞ expresses the asymptotical value of WDVI for LAI → ∞.  
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where ρ42 and ρ24 indicate the reflectance of the observed canopy in red and infrared 
bands respectively, while ρs42 and ρs24 are the corresponding values for bare soil 
conditions. The ratio ρs42/ρs24 can be taken as constant, in analogy with the “soil line 
concept” (Baret et al., 1993). 
 
 
Model inversion, parameterization and set-up 
 
A traditional optimization Marquardt-Levenberg (M-L) algorithm (Levenberg, 1944; 
Marquardt, 1963) was implemented in order to retrieve LAI by inverting the PSH 
model. The solution is achieved by iteratively running the PSH model in direct mode 
and comparing the model output with the acquired CHRIS spectra until an optimal 
parameter set is found. To this end, a cost function depending on simulated and 
observed reflectance data was defined as follows: 
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In the objective function (3) nb is the number of spectral bands, nd is the numbers of 
view directions and ρmod expresses the modelled reflectance for the sun-sensor 
geometry corresponding to the observed reflectance ρobs.  
 The inversion of CRM models is by nature an ill-posed problem since different 
model parameter combinations may produce almost identical spectra (Combal et al., 
2002). Baret et al. (Baret & Guyot, 1991; Atzberger, 2002, 2004), for instance, have 
demonstrated that the spectral reflectance of sparse canopy with mostly horizontal leaf 
orientation is similar to a dense canopy with mostly vertical leaf orientation. 
Simultaneous directional observations, which better characterize the anisotropy of the 
vegetation, should contribute to decouple the counterbalancing effect between LAI and 
ALA on spectral signal. In this sense, multi-directional information should smooth the 
ill-posed problem. Thus, the only regularization taken into account in this study was a 
physical coherent bound on the parameter values.  
 To start off the inversion process the M-L algorithm needs an initial set of 
parameter values as well as their lower and upper bounds (summarized in Table 2). 
 The N and HOT parameters values bounds were left as broad as possible since no 
field measurements is possible to perform due to their uncertain physical nature. Chla+b 
is allowed to vary between 30 and 70, Cw between 0.015 and 0.1 and Cm between  
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Table 2 Input parameters, units, initial values and bounds. 

Parameters Units Initial values Lower bounds Upper bounds 
N – 1.3 1.3 2.0 
Chla+b μg cm-2 30.0 30.0 70.0 
Cw g cm-2 0.015 0.015 0.100 
Cm g cm-2 0.001 0.001 0.010 
LAI m2 m-2 0.1 0.1 6.5 
HOT – 0.0 0.0 1.0 
ALA deg. 30 30 80 
αsoil – 0.80 0.80 1.20 

 
 
0.001 and 0.01. The parameter settings take into account field and intra-fields 
variability from in situ measurements, and were then conservatively broadened.  
 The input soil reflectance is calculated by averaging spectral samples of soils 
measured by means of a field spectrometer during the campaign. A wavelength-
independent scaling factor, αsoil, was left free to vary in a range of ±20% from the 
mean. The Esky parameter (diffuse irradiance) was fixed to 0.16 independent of the 
wavelength considering local irradiance measurements. The parameters to be retrieved 
by model inversion, LAI and ALA, were allowed to vary in the range 0.1–6.5 and 30°–
80° (starting point 0.1 and 30°), respectively.  
 
 
RESULTS AND DISCUSSION  
 
LAI root mean square error (RMSELAI) and relative percentage error (RPELAI) trend is 
reported in Tables 3, 4 and 5 for alfalfa, corn and potato, respectively. 
 Going from left to right, in each table the RMSELAI and RPELAI values were shown 
corresponding to one angle (“A3”), three angles (“A1”,“A3”, “A5”) and five angles 
(“A1”,“A2”, “A3”, “A4” and “A5”). From up to down the values corresponding to 4 
(LANDSAT-TM configuration), 17 (441, 542, 563, 583, 605, 664, 674, 694, 706, 718, 
731, 745, 758, 773, 780, 831 and 889 nm) and 62 (full CHRIS data set) spectral bands 
are shown.  
 
 
Table 3 LAI root mean square error (RMSELAI) and relative percentage error (RPELAI) trend. 

Alfalfa  1 3 5 View angles 
  4 0.71 0.49 0.44  
17 0.82 0.61 0.49  

Spectral 
Bands 

62 0.76 0.59 0.41  
     RMSELAI 
    
  1 3 5 View angles 

  4 24.5% 23.1% 18.5%  
17 25.6% 25.7% 21.1%  

Spectral 
Bands 

62 24.4% 25.3% 18.8%  
     RPELAI 
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Table 4 LAI root mean square error (RMSELAI) and relative percentage error (RPELAI) trend. 

Corn  1 3 5 View angles 
  4 1.42 1.31 1.25  
17 1.57 0.54 0.58  

Spectral  
Bands 

62 0.76 0.59 0.41  
     RMSELAI 
    
  1 3 5 View angles 

  4 38.4% 32.9% 30.6%  
17 41.1% 14.1% 14.0%  

Spectral 
Bands 

62 31.4% 13.1% 12.9%  
     RPELAI 
 
 
Table 5 LAI root mean square error (RMSELAI) and relative percentage error (RPELAI) trend. 

Potato  1 3 5 View angles 
  4 3.21 3.18 3.14  
17 3.45 3.29 3.10  

Spectral 
Bands 

62 3.46 3.37 2.98  
     RMSELAI 
    
  1 3 5 View angles 

  4 59.8% 59.3% 58.3%  
17 64.3% 61.5% 57.5%  

Spectral 
Bands 

62 64.5% 62.9% 55.3%  
     RPELAI 
 
 
 
 In the alfalfa case and even more of the corn, the LAI estimation accuracy 
improves for each fixed spectral configuration when we add directional information. 
The inclusion of additional spectral bands does not improve LAI estimation accuracy 
for alfalfa. However, for corn, we do observe a significant increase in estimation 
accuracy going from 4 to 17 spectral bands, although the increase is less evident going 
from 17 to 62 spectral bands. Considering these results, the contribution of directional 
information seems to be more marked for the estimation performance of LAI than the 
spectral dimensionality. 
 Concerning the LAI accuracy analysis for potato crops, the results indicate the 
impossibility to achieve reasonable values by using model inversion. Looking at field 
book notes and photos, reasons may be related to the agronomic practices of growing 
potato: during the satellite overpass the potato field revealed deep grooves, partly filled 
with water. Further investigations are required. Perhaps additional restrictions on the 
soil reflectance should be considered in the model inversion parameterization. 
 For the CLAIR model approach, calibration and validation of equation (1) was 
performed by using two independent data sets of LAI measurements collected during 
the campaign. The value of soil-line slope coefficient was calculated resulting in a 
value of 1.10 (ρs42/ρs24), with α* = 0.4 and WDVI∞ = 64. RMSELAI and RPELAI are 
reported for each crop in Table 6. 
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Table 6 LAI estimation accuracy by using CLAIR model. 

Crop RMSELAI RPELAI 
Alfalfa 0.68 35.3% 
Corn 0.45 9.0% 
Potato 0.67 12.1% 
 
 
 Comparison of the two approaches for alfalfa, using similar spectral and 
directional information, the RMSELAI values are relatively similar: 0.68 (CLAIR, 1 
angle, 2 bands) and 0.71 (PSH, 1 angle, 4 bands). With the best angular and spectral 
sampling (5 and 62, respectively), the physical approach improves the accuracy 
slightly less than 25%. As for corn, with similar information contents, the CLAIR 
model performs better than the PSH inversion: 0.45 (CLAIR, 1 angle, 2 bands) and 
1.42 (PSH, 1 angle, 4 bands). Only by using 5 angles and 62 bands, does model 
inversion provide comparable results to the empirical approach. For potato, in all cases 
the vegetation index approach performs better than the inversion of the PSH model.  
 
 
CONCLUSIONS 
 
The CHRIS/PROBA mission and the ESA SPARC campaign have given us the unique 
opportunity to exploit the high spatial and spectral multi-angular imagery. This data set 
has been used to assess the importance of the directional information on the LAI 
estimation accuracy. Moreover, a comparison analysis between an empirical vs a 
physical approach has been carried out. Results show that the directional information 
content improves LAI estimation for two out of three of analysed crops. In the best 
case (corn) it achieved a LAI RMSE of 0.41 by using 5 angles and 62 spectral bands 
with an improvement of almost 65% respect to 1 angle and 17 bands.  
 It also seems that the directional is predominant on the spectral information, 
suggesting in the future the design of space-borne instruments with better capabilities 
to sample the surface reflectance anisotropy.     
 From an operational point of view, results obtained by inverting PSH model and 
exploiting the full CHRIS data are better or comparable to the ones from the empirical 
approach. The inversion process results are highly demanding in terms of 
computational time and parameterization complexity; however, it does not require any 
field measurements to be calibrated, unlike the empirical approaches. 
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