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Abstract Richards equation is widely used as the basis for simulations of water transport in soils. For 
infiltration into horizontal soil columns, Richards equation predicts that the water content profile is a unique 
function of the Boltzmann variable (distance)/(time)9, where q = 0.5. However, a number of experiments 
have found that q is significantly less than 0.5. Scaling with q < 0.5 is consistent with a generalized Richards 
equation that uses a fractional time derivative of the water content. In this paper we consider a generalized 
Richards equation that incorporates the unsaturated hydraulic conductivity function k(fi) of van Genuchten 
(1980). A new method is proposed for estimating the van Genuchten parameters a and n. Estimates of a and 
n are expressed as closed form equations that are functions of other parameters such as the length of wetted 
zone, the sorptivity, and the saturated hydraulic conductivity.
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INTRODUCTION

The hydraulic conductivity of a soil determines the rate at which water can flow in the soil and 
consequently the rate at which suspended or dissolved materials can be transported. Predicting 
flow and transport requires accurate knowledge of the hydraulic conductivity. However, deter­
mining the unsaturated hydraulic conductivity is difficult and complex. Hydraulic conductivity is a 
highly nonlinear function of pressure head or water content, and field and laboratory measure­
ments are difficult and time-consuming. Alternative methods for estimating or calculating the 
conductivity are difficult to validate.

Methods for determining the conductivity generally use some mathematical form for the 
conductivity function. However, no universal equation exists for the unsaturated hydraulic 
conductivity. In 1980, van Genuchten put forward an equation that specifies the conductivity as a 
function of soil water pressure head:
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where k(h) is the hydraulic conductivity (LT-1), ks is the saturated conductivity (LT-1), and a (L-1) 
and n (-) are adjustable parameters. It is difficult to estimate a and n. In this paper, a new method 
for estimating a and n is presented. The method is based on a generalized Richards equation. 
Estimates of a and n are expressed as closed form equations that are functions of the characteristic 
length of the wetted zone, the sorptivity, and the saturated hydraulic conductivity.

GENERALIZED RICHARDS EQUATION

The Richards equation for one dimensional (1-D) horizontal flow may be written as: 
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where 0 is the volumetric water content (L3 L-3) and h is the pressure head (L). The Richards 
equation was obtained originally in 1931 by combining the equation of continuity with the 
empirically based “Buckingham-Darcy” flux law (Swartzendruber, 1968). Later, Bhattacharya et 
al. (1976) showed that the Richards equation can be derived from physically-based molecular 
principles. The derivation is based on the assumption that water moves in a Brownian motion in 
the form of quasi-molecules, an assumption that has also been instrumental in deriving solute 
diffusion and convective-dispersive transport equations (Bhatacharya & Gupta, 1990).

Both the horizontal water transport equation and the solute diffusion equation conform to 
Boltzmann scaling, wherein water or solute profiles are unique functions of the Boltzmann 
variable (distance)/(time)9, with q = 0.5 (Hillel, 1980). However, both water flow and solute 
transport in porous media have been shown to deviate from Boltzmann scaling and follow a more 
general scaling law with q ± 0.5 (Neuman, 1990; Hatano & Hatano, 1998; Haggerty et al., 2000; 
Pachepsky et al., 2001, 2003). A physical model that is consistent with this more general scaling 
consists of particles undergoing non-Brownian motion due to the structure of, or interactions with, 
the porous media (Metzler & Klafter, 2000; Pachepsky et al., 2003). Scaling with q > 0.5 occurs 
when particles undergo Levy motion, which is similar to Brownian motion, except that relatively 
large transitions occur more often, such as may be caused by macropores or fractures. Scaling with 
q < 0.5 occurs when particles remain motionless for extended periods of time. Pachepsky et al. 
(2003) noted that this type of behaviour has long been known in soil wetting, with Nielsen et al. 
(1962) suggesting in 1962 that q < 0.5 may occur when the infiltration front experiences sporadic 
periods of immobility and thus progresses in “jerky movements”. A physical model consistent 
with these dynamics is that of water particles being randomly trapped and having a power law 
distribution of waiting times. Pachepsky et al. (2003) proposed a generalized Richards equation 
based on this concept.

Particles with a power law distribution of waiting times have an infinite mean waiting time, 
and it has been suggested that the transport of an ensemble of such particles can be simulated 
using a fractional time derivative (Meerschaert et al., 2002; Pachepsky et al., 2003). Thus the 
generalized Richards equation is similar to the original except that the fractional time derivative of 
water content is used: 
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where y(<l) is the order of the fractional derivative. Equation (2) reduces to the classical Richards 
equation when y = 1. The fractional derivative is defined by:

dr0 1 d ?0(t,x\
df V(ï-r)dt\t-TY

The initial and boundary conditions for horizontal infiltration into a semi-infinite column are:

/2(x,O) = 7zo, 7/(0,/) = 0, 7z(oo,i) = Ä0

where is initial pressure head.
Application of the Boltzmann transform

(3)
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Equation (2) becomes:

r(i-z/2) jF ja
r(i-3Z/2f d%[ [,d¿ 

with boundary conditions:

h (O) = 0, 7z(qo) = h0

(4)

(5)

HYDRAULIC CONDUCTIVITY

In this section, we incorporate the van Genuchten (1980) soil hydraulic conductivity function into 
the generalized Richards equation and derive closed form expressions useful for estimating van 
Genuchen parameters. Mualem (1976) presented a statistical pore-size distribution model that 
related the soil water retention curve to the hydraulic conductivity function. Van Genuchten (1980) 
proposed a new functional form for the water retention curve and used the model of Mualem 
(1976) to derive a new expression for the conductivity, equation (1). The water retention function 
from Van Genuchten (1980) is:

(6)

where 3S is the saturated soil water content (L3 L'3), 3r is the residual soil water content (L3 L-3), 
and a and n are the adjustable parameters discussed above in relation to equation (1). Considerable 
effort has been directed at developing procedures for estimating values for a and n (e.g. Van 
Genuchten et al., 1992). In the following, we propose a new method for estimating a and n using 
the generalized Richards equation and present closed form expressions for the soil hydraulic 
parameters.

We start by expressing the pressure head as a Maclaurin series:

Tz(^) = aQ + + a2<¡;2 + ••• + •••

Because 7z(0) = 0, we have = 0 and
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where a^ is a negative constant. For convenience, we denote b} = ax. If £ is small enough, then 

/z(^) ~ . However, for small , we have:
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where m = 1----- . At a characteristic length = d (the depth of the leading edge of the wetting
n

front), the water content is defined 6(d) = 6$. Equation (7) then becomes:

mb” =-----â:----------
(6»(«</)"

(8)

Combining equations (7) and (8) gives:

0(£)= \d
0»,

0<£<d

d <%<w

This water content profile is consistent with the function proposed by Philip (1955) and the 
experimental data of Shao (2000).

We now consider integrating equation (4). Integration of the right-hand side of equation (4) 
gives:
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we obtain an expression for a

= -b}, h(0) = 0, and k(0) = ks. For the left-hand side, 
£=o

This result follows from —
d%

we recall the expression given above for 6(£) and obtain
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Thus if we integrate equation (4) and make the substitution (see equation (8)):
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Next, we seek an expression for the parameter n. At x = 0, the soil water flux is:

?U=W 2
For horizontal infiltration, the Phillip infiltration formula has the form:

(H)
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where S= ¿d0 is the sorptivity. Combining equations (9), (11), and (12) results in an 

expression for a:

dS

Substituting equation (13) into equation (10) yields an expression for n that does not contain a:

SV{\-'iyl2)
/7-_5r(l-3Z/2)-2r(l-r/2)(^-^0)¿7’

DISCUSSION AND CONCLUSION

Equations (13) and (14) are closed-form expressions for a and n in terms of the parameters ks, S, d, 
3S, 3q, 3v and y. When these parameter values are available, equation (14) can be used to calculate n 
and then equation (13) can be used to calculate a. Measurements of horizontal water adsorption 
can be used to determine /and S (equation (12)). The parameters ks, 3S, 3^ 3r, are relatively easy to 
estimate or measure, whereas the characteristic length d can be estimated as a distance between the 
surface and the wetting front. The method developed in this paper is a quick and inexpensive 
approach to estimating hydraulic parameters.
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