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Abstract Spatial analysis as a framework for exploring spatial patterns is well known in social-geography, 
econometrics and other fields, but has seldom been applied in catchment hydrology. This paper presents a 
new method for the investigation of the spatial patterns of hydrological variables from a spatial analysis 
perspective. Using the topographic index (TI) as an example, the preliminary yet promising results obtained 
from this analysis suggest that the Global Moran’s I index constructed from an asymmetric inverse flow 
distance weight matrix is an effective bulk signature of hydrological spatial structure, and the Local 
Indicator of Spatial Association (LISA) captures well the transition from hydrological heterogeneity to 
hydrological homogeneity with increasing spatial scale. These results suggest that complementary to 
existing statistical methods, spatial analysis could be a promising framework for quantifying and modelling 
spatial patterns exhibited by hydrological variables.
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INTRODUCTION

The significance of spatial structure within hydrological variables has been extensively appreciated 
and studied (Western et al., 2001; Milzow et al., 2004; Marani et al., 2006; Valdes et al., 2006), 
and it has also been realized that standard statistical methods and even geostatistical methods are 
not sufficient to detect and quantify such spatial structures (Western et al., 2001; Cai & Wang, 
2006). The existence of spatial structure violates the assumption of standard statistical hypothesis 
tests (Cai & Wang, 2006), which assume that spatial variables are independent, thus automatically 
neglecting the close correlation that exists in space. Standard geostatistics is able to represent 
spatial continuity, but not spatial structure/organization. Western et al. (2001) convincingly 
demonstrated that the hydraulic connectivity among spatial hydrological variables, e.g. soil 
moisture, could not be captured and quantified by standard geostatistical methods.

Spatial analysis, however, is an alternative and effective framework for studying spatial 
patterns within hydrological variables, besides standard statistics and geostatistics. Cai & Wang 
(2006) used Moran’s I to quantify the global autocorrelation of the Topographic Index (TI), and 
examined the impacts of spatial scale and resolution on the Moran’s I of TI. However, the Moran’s 
I in their work is constructed from an Inverse-Euclidean-Distance weight matrix without 
considering the hydrological connection among spatial locations, and therefore can actually only 
capture the spatial continuity of TI. We extend their work by constructing Moran’s I from an 
asymmetric-Inverse-Flow-Distance weight matrix, which has more significant hydrological 
meaning than the Inverse-Euclidean-Distance weight matrix, and enables us to investigate spatial 
connectivity. Moran’s I as a bulk indicator integrates the whole spatial structure into one single 
value. This is convenient for comparison among various basins (Cai & Wang, 2006) after 
standardization, but is not suitable for exploring the detailed spatial structures which might shed 
light on the underlying physical mechanisms. We therefore also apply another indicator, the Local 
Indicators of Spatial Association (LISA), to the TI of the same watershed. Interestingly, we find 
that LISA is able to effectively capture the apparent transition from hydrological heterogeneity to 
homogeneity that occurs with increasing spatial scale.

In this paper we first introduce Global Moran’s I and LISA. We then apply these two 
indicators on TI from a natural watershed, and present the results along with some discussion of 
the results. Finally we draw a few preliminary conclusions.
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METHODOLOGY

Spatial autocorrelation refers to the correlation of the values of one single variable through a 
spatial region, i.e. the value of a variable at one location is related to the values of the same 
variable at other neighbouring locations. Global Moran’s I and LISA are the most widely used 
spatial statistical tools for quantifying spatial autocorrelation (Anselin, 1995, 2004). The 
mathematical description of Global Moran’s I is as follows:
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where X is the variable of interest, i and j indicate different locations, X is the average of X 
through the whole study area, Wy is the so-called spatial weight between X¡ and X^ which 
quantifies the level of relation between these two values. The larger the value of Wy, the more
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closely correlated Xi and Xj are. y() = ^^Wij is used here as a normalization value such that the 
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range of I is from -1 to 1. Positive values indicate spatial similarity, i.e. clustering of similar 
values, and negative values indicate spatial dissimilarity, i.e. clustering of dissimilar values. Zero 
value indicates no spatial autocorrelation, i.e. spatial randomness. Considering “similarity” might 
have a different meaning in hydrology. We hereafter refer to spatial similarity as spatial 
homogeneity, and spatial dissimilarity as spatial heterogeneity.

Wÿ could be flexibly defined according to the types of spatial relation, for example, Wÿ can be 
defined as inverse Euclidean distance Dy, i.e. Wÿ = l/Dy. This definition is consistent with the First 
Law of Geography, which states that “every thing is related to something else, but nearer things 
are more related than distant things” (Tobler, 1970). However, the global Moran’s I based on this 
definition of spatial weight matrix is just a measure of spatial continuity. In this paper, Wÿ is 
defined as inverse flow distance, and flow distance is the distance between any two locations along 
a natural flow path. The difference between Euclidean distance and flow distance is illustrated in 
Fig. 1. Note that [Wy] is a spatial weight matrix, and hence [Wy] constructed from inverse 
asymmetric flow distance is an asymmetric matrix, which is the one utilized in this work.

It is often assumed in spatial analysis that the values at two locations will be independent if 
the distance between them exceeds a certain value, i.e. threshold distance (hereby noted as 
Dthreshold)- That is, if the two locations are far enough, they are not related, thus the corresponding 
weight is automatically zero. Therefore, for each value of threshold distance Dthreshold there will be 
a corresponding weight matrix, and thus a corresponding value of Global Moran’s I.

Fig. 1 Euclidean distance and flow distance (arrows indicate flow direction).
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Notice that although Global Moran’s I is a dimensionless number, there is no theoretical 
foundation to directly compare the values of Global Moran’s I (for different variables within the 
same region or the same variable within different regions). A more rigorous way is to use 
standardized Global Moran’s I (Luc Anselin, personal communication), calculated as follows:

z = E(E)/SE(E) (2)

where E(I) and SE(I) are the average and standard deviation of Global Moran’s I, respectively. A 
positive standardized Global Moran’s I means spatial similarity, whereas a negative value means 
spatial dissimilarity.

According to its definition, Global Moran’s I is a bulk indicator of spatial correlation 
integrated over the whole region, and cannot help detect detailed information on spatial processes 
within a region. Local Indicators of Spatial Association (LISA) are able to represent local spatial 
autocorrelation for each location, and thus are a powerful tool to explore spatial processes within 
the region of interest (Anselin, 1995). Notice that LISA is a generic name of a series of local 
spatial statistics. Local Moran’s I, as a special case of LISA, can be defined as:

(3)

where m2 = ^.X2 does not vary with location z. Global Moran’s I is the spatial mean of Local 

Moran’s I.

RESULTS AND DISCUSSION

Global Moran’s I of TI

A small watershed with a drainage area of about 3 km2 in Brown County, Indiana, USA, was 
selected for this illustrative study. Topographic Index (TI) (Beven & Kirby, 1979) has significant 
hydrological meaning and exhibits spatial structure, and is therefore selected as the variable under 
study. But there is no doubt that these spatial analysis tools can be applied to any other 
hydrological variable that exhibits spatial structure. TI of this watershed is calculated based on a 
30 x 30 DEM, as shown in Fig. 2.

Table 1 shows Global Moran’s I calculated from different distance types and different 
threshold distances. Generally speaking, the values of standardized Global Moran’s I from inverse

Fig. 2 Distribution of TI in the watershed under study.
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Table 1 Moran’s I and Z values under different weight matrices.

D threshold Distance type Global Moran’s I Standardized Global
Moran’s I

30 m Euclidean distance 0.4406 32.34
30 m Flow distance 0.7284 44.06
150 m Euclidean distance 0.1380 41.94
150 m Flow distance 0.6045 80.37

flow distance weight matrices are usually greater than those from inverse Euclidean distance 
weight matrices. Although not fully presented here, the results under other threshold values also 
confirm this conclusion. The reason for this phenomenon is that the probability of two locations on 
the same flow path having similar values (inverse flow distance weight) is larger than that of two 
locations close to each other, but not on the same flow path (inverse Euclidean distance weight), 
while the probability of two locations on the same flow path having dissimilar values is smaller 
than that of two locations close to each other while not on the same flow path. This would be more 
easily understood by considering two locations, one in the river, and another on a hillslope close to 
the previous one, but with the two locations not being on the same flow path. The values of TI will 
be significantly different between them. The weight from inverse Euclidean distance is a fairly 
large value due to short Euclidean distance, which leads to smaller Moran’s I due to the 
dissimilarity between the values of TI. The weight from inverse flow distance is zero since they 
are not hydraulically connected, and thus will not affect the value of Moran’s I.

Impact of threshold distance

Threshold distance is another important factor affecting Moran’s I. There are, in fact, two methods 
to define neighbouring area of a location with the help of threshold distance (Luc Anselin, 
personal communication). One is called the cumulative neighbourhood method, which defines all 
locations having an effective distance smaller than the given threshold distance as neighbours. 
Such a neighbourhood is like a dish. The previous results are based on this method. The other one 
is called the band neighbourhood method, which defines all locations having an effective distance 
larger than a minimum distance Dthreshoid,mm while smaller than a maximum distance Dthresholds as 
neighbours. Such a neighbourhood is like a circular band, or a donut. The difference between 
Dthresholds and Dthresholds is called the width of the band, and is usually a constant. The sensitivity 
of standardized Global Moran’s I on threshold flow distance is examined in this work with the 
cumulative neighbourhood method and the band neighbourhood method, respectively.

Figure 3(a) shows that, under the cumulative neighbourhood method, standardized Global 
Moran’s I of TI first increases quickly, reaches the maximum at a threshold flow distance of about 
500 m, and then decreases relatively slowly with increasing threshold flow distance. This is 
consistent with Fig. 3(b), where the band width in Fig. 3(b) is 30 m in this work, and the threshold 
distance is estimated as the mean of Dthresholds and Dthresholds In Fig. 3(b), under the band 
neighbourhood method, the standardized Moran’s I of TI starts as a positive value (similarity 
among nearby neighbours), decreases to zero at a threshold distance of 500 m, and then flips to 
negative. The abrupt increase of the standardized Moran’s I of TI from about 2600 m is probably 
caused by error since the longest flow distance in the study area is about 2600 m, and can thus be 
neglected. A possible hypothesis which could be inferred from Fig. 3 is that the values of TI at two 
locations having a certain distance (here about 500 m) might not be related, i.e. they are totally 
independent.

Local Moran’s I

As we have discussed previously, the values of local Moran’s I are the local components of Global 
Moran’s I, and a map of local Moran’s I is a detailed description of the spatial structure of the 
hydrological variable of interest.
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Fig. 3 Standardized Global Moran’s I (under asymmetric inverse flow distance weight matrix) changing 
with threshold distance.

Fig. 4 LISA cluster maps under traditional weight matrices: (a) queen contiguity weight, (b) inverse 
Euclidean distance weight.
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Figure 4 shows the maps of local Moran’s I calculated from traditional weight matrices: queen 
contiguity weight matrix and inverse Euclidean distance weight matrix. Queen contiguity is a type 
of contiguity (the other two are rook contiguity and bishop contiguity). If two spatial units share a 
common boundary or a common vertex, then we define their relationship as queen contiguity. 
Notice that our work is based on 30 x 30 DEM, i.e. grid areas. These maps are calculated with 
software GeoDa (Anselin, 2004a) and R (Anselin, 2004b). The High-High clusters are the 
locations with high TI values surrounded by high TI values (similarity), Low-Low clusters are 
the locations with low TI values surrounded by low TI values (similarity), Low-High clusters 
are the locations with low TI values surrounded by high TI values (dissimilarity), and High-Low 
clusters are the locations with high TI values surrounded by low TI values (dissimilarity). The 
common feature of Fig. 4(a) and (b) is that the grids near ridges are defined as Low-Low clusters 
as highlighted by dashed circles, i.e. they are defined as similar neighbours.

However, some grids near ridges are not real neighbours from a hydrological perspective. 
Although some grids at the ridges are adjacent, they may not be hydrologically connected, since 
water will disperse in different directions. The probability of them being on a common flow path is 
considerably low. So according to the definition of inverse flow distance weight, the weight 
between such two locations at the ridges is most probably zero. This fact is well reflected by the 
maps of standardized local Moran’s I shown in Fig. 5. It can thus be concluded that LISA from 
inverse flow distance weight matrix is more reasonable than the LISA from other weight matrices, 
in the sense that it effectively removes the hydrologic-pseudo-neighbours.
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Fig. 5 Standardized Local Moran’s I under inverse flow distance weight matrix: (a) threshold flow 
distance = 30 m, (b) threshold flow distance = 3000 m.

Another interesting pattern from the inverse flow distance weight matrix method (Fig. 5), 
which is not imposed by the results of the other two methods (Fig. 4), is that the LISA values 
increase along the streams in the downstream direction, i.e. from negative (significant 
heterogeneity) at the headwater cells to positive (significant homogeneity) at the downstream cells. 
Note that the grid cells within the river reaches are river cells. According to the definition of 
inverse flow distance weight matrix, and thus the corresponding definition of hydrological 
neighbours, for those river cells at the headwaters, their neighbours are mainly the cells on the 
hillslope (hereafter noted as hillslope cells). Noticing that the river cells have high TI values while 
the hillslope cells have low TI values, it is not difficult to expect dissimilarity among the most 
upstream river cells and their neighbours. However, for any cell on the main stream, river cells 
consist of a large part of its neighbours, and because the river neighbour cells have apparently 
larger weights (due to shorter flow distances) than hillslope neighbour cells, i.e. the river 
neighbour cells have more impacts than the hillslope cells, so it is reasonable to expect similarity 
among the cells on the main stream. The increasing of LISA values along the channel in the 
downstream direction is especially clearly shown in Fig. 5(b). Together with the increasing of 
LISA values, the drainage area, i.e. spatial size, is also increasing in the downstream direction. 
That is, a river cell with a larger drainage area is also having a larger LISA value, which implies 
more spatial homogeneity.

CONCLUSIONS

From the above discussions, a few preliminary conclusions can be drawn:
- Spatial analysis is a promising framework to detect and quantify spatial pattem/structure 

besides standard statistics and geostatistics, as illustrated here with standardized Global 
Moran’s I and Local Moran’s I.

- From a hydrological perspective, inverse flow distance weight matrix has more hydrological 
meaning than inverse Euclidean distance proposed by Cai & Wang (2006), and thus has more 
potential to be applied for hydrological modelling on a catchment scale.

- Comparing with Global Moran’s I, LISA, here referring to local Moran’s I based on inverse 
flow distance weight matrix, is more able to detect local spatial pattern and help us to detect 
spatial trends in a region.

- LISA of a hydrological variable nicely represents the transition from spatial heterogeneity 
(dissimilarity) to homogeneity (similarity) from the headwater to the watershed outlet, with 
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increasing drainage area. It is the authors’ feeling that, although further theoretical 
clarification is necessary, this result could possibly be used as one of the ways to estimate the 
reasonable size of the Representative Elementary Watershed (REW) (Reggiani et al., 1998) 
for distributed hydrological modelling.
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