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Abstract Topographic index (TI) is an important parameter in catchment hydrology. The resolution 
dependence of TI statistics such as mean and variance has been discussed extensively in literature, while the 
TI structure at different scales, a different issue from resolution, needs more attention. To deal with the 
directional characteristics of TI structure, this paper uses the two-dimensional continuous wavelet transform 
(CWT) to explore the TI structure at different scales under several resolutions. For the 90-m resolution, the 
TI structure can be retrieved up to the scale of 270 m; only the main features (such as main streams) can be 
retrieved with the scale of 360 m; and even the main structure cannot be retrieved with the 900 m scale. For 
the 180 m resolution, both high and low order streams can be retrieved at the 180 scale; but for 270 m 
resolution, only the main steam structure can be captured at the 270 scale. Such preliminary results can give 
some insight into a suitable DEM resolution for deriving TI and the scale characteristics of TI structure. For 
example, the 180 m resolution of TI can be used if the high resolution DEM, such as 30 m resolution, is not 
available; the 270 m resolution TI is not suitable for capturing the flow process in the second or higher order 
stream.
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INTRODUCTION

Topographic index (TI) is an important parameter in catchment hydrology. For example, TI is a 
key concept in TOPMODEL (Beven & Kirkby, 1979), a catchment hydrological model that is 
widely used to predict spatial patterns of soil moisture and depth of the water table (Moore et al., 
1991). The prediction of TOPMODEL depends on the mean value and distribution of TI in a 
catchment. TI is derived from the digital elevation model (DEM); and then the TI statistics depend 
on the resolution of DEMs (Zhang & Montgomery, 1994). A DEM with low resolution may not 
capture the small scale features; whereas DEMs with high resolution may not be available.

The scale issue is closely related to the resolution issue, but they are two different concepts. 
With the decline of resolution (e.g. from 30 m to 90 m), small features, i.e. features at small scales, 
may disappear. Given a certain resolution, different physical phenomena or characteristics 
dominate at different scales. It is then worthwhile to explore the TI structure at different scales for 
a given resolution of TI. Cai & Wang (2006) explored the spatial autocorrelation of TI at different 
scales under the 30 m DEM; they found that positive spatial autocorrelation of TI exists over a 
wide range of spatial extents and the autocorrelation declines with the increase of spatial extents, 
but becomes relatively static beyond a threshold area of approx. 1 km2. To further study the issue 
of resolution vs scale, this paper applies the two dimensional (2-D) continuous wavelet transform 
(CWT) to exploring the TI structure at different scales and resolutions. The wavelet transform 
technique is a useful tool to investigate the scale issue. By using the CWT, we test the following 
hypothesis - for a given scale, a certain DEM resolution may be necessary to derive the TI 
structure at the scale. On the other hand, for the same purpose, a fine DEM resolution may not be 
necessary because of data redundancy.

METHODOLOGY

The wavelet transform originated from seismic data analysis (Morlet, 1981, 1983). Grossmann et 
al. (1985) developed the geometrical formalism of the continuous wavelet transform based on 
invariance under the translation and dilation, which allowed the decomposition of a signal into 
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contributions of both space and scale. The continuous wavelet transform is particularly suitable for 
analysing the local differentiability of a function and for detecting and characterizing possible 
singularities (Améodo et al., 1988). The wavelet transform performs like a microscope that 
discriminates different scales in an ^-dimensional field, and like a polarizer that separates the 
different angular contributions of the signal. The wavelet transform of a function /^) is defined as:

Wf(a,b) = P b(u)du a>0 (1)

where

= <2) 
yja a

Ta>b(u) represents a family of functions, which is called wavelets; ÿab(u) is the complex 

conjugate of 7^(w); and a is a scale parameter. If a > 1, it has a dilating effect on the wavelet, 
otherwise it has a contracting effect, b is a location parameter, and the analysis can be taken 
around different locations by changing the value of b. The wavelet transform defined by equation 
(1) is called the continuous wavelet transform (CWT) because the scale and location parameters 
have continuous values. Wavelet transforms implemented on discrete values are called discrete 
wavelet transforms (DWTs). DWTs have been used to segregate spatial rainfall into multi-scale 
local averages and multi-scale local fluctuations by Kumar & Foufoula-Georgiou (1993a,b); and 
technical details of DWTs are presented by Daubechies (1992). A comprehensive review of 
wavelet applications in geophysical studies can be found in Kumar & Foufoula-Georgiou (1997).

The 2-D CWT is used in this paper. For a 2-D image (such as a TI map) denoted as f, the 
wavelet transform corresponding to the analysing wavelet i// is defined as (Antoine et al., 1993):

Wf(a,0,b} = a} |j2x^(a-1r_0(x-b))/(x) = a jó/2kezbk^(ózr_^k)/(k) (3)

where /(k) denotes a Fourier transform of y(k), and the over bar is the conjugate complex. 

Wf(a,3,b) is the projection of f on the wavelet % which is translated by b, dilated by a and 
rotated by an angle 6. The 2-D CWT acts as a filter for four variables: location parameters b = 
(Z?i,Z?2), scale parameter a and direction parameter 0. Thus, there are two types of representation: 
(1) By fixing (a,3), the transform is conducted as a function of b alone. This representation is 
useful in the detection of position, shape and contours of objects, form recognition and the 
identification of directional features. (2) With fixing b, the CWT is a function of (a,0), i.e. the 
scale-angle representation. In this representation, by fixing a and traversing along 6, we can extract 
directional information at a fixed scale ¿z; while by fixing 0, scale information in a particular 
direction can be obtained (Kumar, 1995).

Among several available 2-D analysing wavelets such as the 2-D Mexican hat, difference 
wavelets and the optical wavelet (Antoine & Murenzi, 1996), the 2-D Morlet wavelet is chosen for 
this analysis because of its directional selectiveness capability of detecting oriented features and 
fine tuning to specific frequencies (Antoine et al., 1993). The 2-D Morlet wavelet is defined as:

^(x) = exp(zk0 • x)exp(-i|y4x|2) (4)

where i = 4-1, A = diag [s~1/2,l], s>l,isa2x2 diagonal matrix that defines the anisotropy of the 
wavelet. k0 = (0,&0) defines the frequency complex exponential exp(zk0 x). The Morlet wavelet is 
characterized by the two parameters, e and k0.

In this paper, the TI structure is extracted at different scales. The TI structure, which reflects 
the stream network, is multidirectional. Thus, for each considered scale, the responses with 
maximum modulus over all possible orientations are extracted, i.e.:

M(a,b) = max (| Wf(a, 3,b) |) (5)
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The Morlet wavelet transform is computed for 3, spanning from 0 up to n at an interval of ^/36 
(i.e. 5 degrees); and the maximum coefficients are taken. Because of the periodicity characteristic of 
Fourier transform, | Wf(a,3,b) | is equivalent to | Wf(a,9 + 7i,b) | (Antoine & Murenzi, 1996).

To demonstrate the directional selectivity of Morlet wavelet, a 2-D random field is created 
and a horizontal line is added to the field (Fig. 1). 0 indicates the direction in the Fourier domain. 
Thus large values along this direction in the Fourier domain correspond to large values in (æ/2 - 3) 
direction in the physical domain. Figure 2(a) shows the CWT modulus with 3 = rc/2, the horizontal 
features can be retrieved, i.e. the line in Fig. 1. The orientation selectivity of Morlet wavelet 
depends on the two parameters: 8 and ko, specifically the value of k07J (Antoine et al., 1993). 

Comparing Fig. 2(b) to Fig. 2(a), the values of 8 and k0 are different and others are the same. 
Figure 2(b) has stronger selectivity in the horizontal direction.

Fig. 1 2-D random field with a horizontal line.

CWT2D: fixed .5708»
Wavelet: moilet2d i kc=1. sigma=1. epsilon=1 )

Fig. 2 CWT with the 2-D Morlet wavelet, (a) a = 1, 9= 7i/l, kQ = 3, £ = 8; (b) a = 1, 9= nH, Rq = 1, s = 1.

RESULT ANALYSIS

A TI map is analysed using the 2-D Morlet wavelet, and the analysis is implemented in ArcGIS 
and MatLab softwares. Figure 3(a) shows the TI map of a catchment, which includes the 
Mackinaw River basin located in Illinois. The original resolution of the DEM is about 90 m. 
Figure 3(b) shows the stream network derived from the DEM when the threshold for defining
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streams is set to 500 cells (i.e. 4.05 km2 drainage area) using single flow direction algorithm. As 
shown in Fig. 3(a), the spatial distribution of TI matches the river network. Along the stream (the 
white lines) the TI values are large; the TI values gradually decrease away from the stream. The 
black line features are the ridges, which have small TI values. Thus, the directional characteristics 
are shown with the TI structure.

To extract the TI structure, the optimal values of parameters k0 and s are set to 3 and 2, 
respectively, by trial-and-error. Figure 4 shows the extracted features under a series of scale 
factors, ¿z=l,2, 3, 4, 10, which correspond to the scale of 90 m, 180 m, 270 m, 360 m and 900 m, 
respectively. From small to large scale, the retrieved features become larger and clearer, but the 
features at small scales cannot be retrieved (e.g. lower order streams). Under the scale of 360 m, 
only the main features (e.g. main streams) can be retrieved (Fig. 4(d)), but under the 900 m scale, 
the main structure cannot be retrieved, and the CWT results basically do not reflect the TI structure 
(Fig. 4(e)).

For the TI map at different resolutions, the Af(¿z,b) can be retrieved at the same scale factor a 
= 1. Figure 4(a) shows the retrieved features for TI at 90 m resolution, and Fig. 5(a) and (b) show 
the retrieved features at 180 m and 270 m resolution under a corresponding scale (i.e. 180 m or 
270 m), respectively. As shown in the figures, under the 180 m resolution, both high and low order 
streams, but under 270 m resolution only the main steam structure can be captured at the 
corresponding scales. Comparing Fig. 5(a) to Fig. 4(b), the TI structures are retrieved under the 
180 m scale based on TI derived from 180 m and 90 m DEM, respectively. The results from the

(a)

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

(b)

Fig. 3 (a) A TI map derived from the 90 m DEM. (b) Derived stream network by single flow direction 
algorithm with a threshold of 500 cells.
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Fig. 4 Tl map under 90 m resolution at the scale (a) a = 1 ; (b) a = 2; (c) a = 3; (d) a = 4; (e) a = 10.
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180 m DEM are comparable with that from the 90 m DEM. Correspondingly, the features are 
retrieved at the 270 m scale based on the TI with 270 m and 90 m resolution by comparing Figs 
5(b) and 4(c). As can be seen, at the 270 m scale, the TI structure from the 90 m DEM is better 
than that from the 270 m DEM, especially for the lower order of streams.

50 100 150 200 250 300 350

Fig. 5 TI maps under (a) 180 m resolution and (b) 270 m resolution; a = 1 for both cases.

CONCLUSION

In this paper, the 2-D CWT is applied to investigate the resolution and scale issue using TI as the 
variable. For the DEM with 90 m resolution, the TI structure can be retrieved up to the scale of 
270 m; only the main features (such as main streams) can be retrieved under the scale of 360 m; 
but the main structure cannot be retrieved under the 900 m scale. For the 180 m DEM, both high 
and low order streams can be retrieved at the 180 m scale; but for 270 m DEM only the main 
stream structure can be captured at the 270 m scale. Such preliminary results can provide some 
insights about a suitable DEM resolution for deriving TI and the scale characteristics of TI 
structure. For example, for the case study catchment, the TI derived from the 180 m DEM can be 
used if the high resolution DEM, such as 30 m resolution, is not available; the 270 m DEM is not 
suitable for capturing the features in the second or higher order streams.
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