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Abstract The fractal dimension of river networks has become a significant geomorphologic parameter for 
identifying hydrological patterns. Several definitions for fractal dimension are used in hydrological 
literature, among which the box-counting dimension via Digital Elevation Model (DEM) is widely applied. 
To explore the uncertainty of the box-counting method along with the mathematical implementing 
processing, three factors, i.e. threshold area for river networks extracted from DEM, range and increment 
ratio of box sizes, were selected to identify their influence on the value of the box-dimension. One real 
watershed, the Chabagou watershed, and one ideal watershed generated by an iterative algorithm, were 
selected for numerical experiments. The results suggest the following properties of the box-dimension of 
river networks: it shows an asymptotic power law behaviour for larger threshold areas; it has a logarithmic 
dependence for smaller threshold areas; and it is monotonic to the range of calculated box sizes while 
insensitive to the increment ratio of calculated box sizes. These relationships reveal the complexity of the 
box-dimension of fractal river networks.
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INTRODUCTION

Natural channel networks show a fascinating variety of shapes and forms, which present a deep 
sense of regularity in the relationship among the parts. This regularity is presented as self­
similarity by Horton (1945). Mandelbrot (1983) proved that natural channel networks have a 
fractal character. La Barbera & Rosso (1989) promoted a fractal dimension in terms of Horton’s 
laws. Thereafter, several approaches to calculate the fractal dimension of networks have been 
applied. Rodriguez-Iturbe & Rinaldo (1997) mentioned the Hausdorff dimension, box-counting 
dimension, similar dimension, correlation dimension, mass dimension, information dimension, etc. 
Using three different approaches, Veltri et al. (1996) counted the fractal dimensions of 17 Calbrian 
drainage basins.

Over the last two decades, with the help of Digital Elevation Models (DEMs), the fractal 
dimension of some river basins has been counted. La Barbera & Rosso (1989) claimed that 
different networks, or channel networks in different physiographic locations, may display different 
values of fractal dimension. As fractal dimensions of many river basins were counted, the 
underlying connection between the fractal dimension and hydrological character were also studied. 
For example, Kusumayudha et al. (2000) showed that the box-counting dimension of river 
networks is related to the erosion of rock, as well as to the fractal dimension of underground river 
pattern.

Consequently, for further investigation on the relationship between the fractal character of 
rivers and their hydrological properties, it is of great importance to determine the fractal dimension 
accurately and subtly. However, it has been pointed out that the fractal dimension calculated by 
different approaches will probably be different. Therefore, to compare the applicability of those 
approaches for estimating the fractal dimension of river networks, further investigations are 
indispensable. Moreover, even for a particular method, there are some other issues that can bring 
uncertainty to the results, e.g. Helmlinger et al. (1993) found that the range of box sizes affects the 
fitting of box-counting dimensions. Particularly, Ichoku et al. (1996) showed that those four kinds 
of fractal dimensions decrease as the threshold of confluence area increases, albeit with only five 
threshold areas. Radziejewski et al. (1997) counted the box-counting dimension for excursion of 
flow process at a threshold level, and observed the same trend between dimension and threshold 
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areas; however, the study lacks adequate data for more detailed discussion. Yang et al. (1997, 
2001) proposed that the multifractal spectra of width function and area function were also sensitive 
to the threshold area. Huang (1996) studied the factors affecting the reliability of box-counting 
dimension from a mathematical aspect. Up until now, the sensitivity of the box-counting 
dimension of river networks to the threshold area has not yet been discussed comprehensively, nor 
has the uncertainty coming from the factors of chosen method; further study of the relationship 
needs more and adequate data.

In this paper, we investigate the uncertainty of fractal characteristics in river networks along 
with the mathematical dealing processes, with the box-counting dimension as an example due to 
its simplicity, and thus popularity in the hydrological literature. Previous work has discussed this 
method itself and the effects of threshold area and box size in its calculation. However, there is 
still a lot of work that needs to be done in this area. The paper first presents a comparative study 
using a theoretical fractal to validate the result. Then it takes the Chabagou watershed as an 
example, and focuses on the investigation of the factors determining the box-counting dimension.

STUDY AREA AND NUMERICAL ANALYSIS METHOD

The analysis is based on the case study in the Chabagou watershed, a branch of the Yellow River 
basin. The Chabagou watershed is located at longitude 109°47'E and latitude 37°31'N, with a total 
area of 187 km2. Figure 1 shows the DEM map of the study area with the resolution of 50m.

Fig. 1 DEM of the Chabagou River basin.

To calculate the box-counting dimension for a fractal F, we first assume this fractal lies on an 
evenly-spaced grid, and count the number of boxes in the grid required to cover the set. The box­
counting dimension is then calculated by measuring how this number changes as we make the grid 
finer. Let r be a positive number and F a non empty and bounded subset of a metric space (X, d).
Suppose that N(r) is the number of boxes with side length r required to cover the set F. As r- 
log 7V(r)/log(l/r) converges to a finite value, then the box-counting dimension is defined as:

+0, if

n - HmJ^box nm / x
r->o log(l/r) (1)
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The box-counting dimension is used in application for its compatibility in a numerical 
experiment by the definition. A sketch of such a numerical algorithm, described by Lovejoy et al. 
(1987), is as follows. First, put set F into a grid, which is divided into boxes of size r. Second, 
count the number of boxes N(r) that actually cover F. In practice, r is chosen from a finite range in 
a geometric series, and N(r) is obtained correspondingly. Finally, make a log N - log 1/r plot and 
the slope is the box-counting dimension.

According to this method, we set up the following steps to approach the box-counting 
dimension of the Chabagou River. (1) Extract the river networks from the DEM map of the 
Chabagou watershed, with different thresholds of confluence areas; the threshold of confluence 
area is a critical factor in defining a river network. The smaller the threshold area is, the denser the 
river network will be. Consequently it strongly affects the characteristics of river networks, 
including the fractal dimension. (2) Generate boxes with different sizes, and use them to cover the 
river networks. Count the number of boxes N(r) which contain the river segments. The choice of 
sizes, e.g. the range and the increment ratio of r, will impact the final result. In principle, an 
infinitesimal increment ratio of r and an infinitely large range are necessary to get the true fractal 
dimension. In order to reduce errors resulting from imperfectness of the range and increment ratio 
of r, we used small increment ratio and large ranges. Meanwhile, we also investigate the effects of 
their variation on the fractal dimension. (3) Generate a logarithmic plot, with the slope showing 
the box-counting dimension of river networks.

Before the detailed calculation of the box-dimension of the Chabagou River, it is necessary to 
verify that our numerical analysis method is technically correct. Hence as a control example, a 
treelike model, which is an ideal fractal and an approximate representation of natural river 
networks (mentioned by Nilora, 1993), is taken to estimate the box-counting dimension using this 
method. This ideal fractal network is generated using a simple iterative algorithm (cf. Fig. 2). 
According to the iterative algorithm, it shows that the real box-counting dimension is Iog5/log3 = 
1.46. Then we calculate its box-counting dimension by the same method, which will be applied in 
the Chabagou River networks.

In Fig. 3, we find a nearly perfect straight linear fit of data points on the log 7V~ log (1/r) plot, 
with slope 1.43 being consistent with the above theoretical prediction. Even though the coefficient 
of determination is up to 0.99, the box-counting dimension varies with different ranges of box 
sizes. This can be explained as follows: when the box size is smaller than the smallest bifurcation 
of this ideal fractal simulation, its shape is not fractal anymore because its bifurcation ends here. In 
this case the fractal dimension measured by those boxes will become one. Therefore the slope is 
flatter when the box size is smaller. For the same reason, the box-counting dimension we estimate 
is slightly less than the real one.

Fig. 2 Ideal fractal network with D = 1.46.
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log (1/r)
Fig. 3 Box-counting dimension of the ideal fractal with six iterations. The fitted line is log N = 1.43 
log(l/r) + 0.10 with R2 = 0.999.

RESULTS AND DISCUSSIONS

In this method, there are three critical factors in calculating box-dimension of river network. The 
first one is the threshold of the confluence area, which is determined while generating the river 
networks. The other two are the increment ratio and range of the boxes sizes. Our work focuses on 
how each factor influences the calculated box-counting dimension of river networks, and further­
more figuring out how to mitigate the uncertainty imposed by the three factors.

Relationship between the increment ratio of box sizes and the box-counting dimension

According to the definition of box-counting dimension, as the box size r converges to zero, the 
limitation of the formula requires r to decrease continually, and the increment ratio of box sizes 
should be as small as possible. However, in numerical analysis, the increment ratio can not be too 
small. Hence, to study the relationship between the increment ratio and the box-counting 
dimension, we should try to find out the appropriate increment ratio and exclude the influence of 
this factor.

From Table 1, it is shown that in a certain range the ratio of box sizes impacts little on the 
result of the ideal fractal. The result values fluctuate when the increment ratio of box sizes is over 
2, but is identical for any ratio smaller than 2. When the ratio is smaller than 1.4, the error is less 
than 1%. Therefore, as long as the ratio is less than two, the effect of discreteness of box lengths 
can be neglected.

Relationship between the range of the boxes sizes and the box-counting dimension

Take the network with threshold area equal to 150 as an example. The range of box sizes is from 
40 to 4000. Figure 4 shows that the slope changes with the variation of the range of boxes. For

Table 1 Relationship between the increment ratio of box sizes and the box-counting dimension.
Increment ratio of box sizes 1.10 1.21 1.46 2.74
Box-counting dimension 1.24 1.25 1.27 1.28
One standard deviation 0.01 0.01 0.02 0.04
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Fig. 4 Relationship between the range of box sizes and the box-counting dimension.

the smallest box size the slope of the curve approaches to 1, indicating D = 1, which is reasonable 
for the individual stream links consisting of straight lines. For the largest box sizes the slope will 
approach slope = 2 because all the points fall in only a few boxes. It can be concluded that the 
slope of the curve depends on the range of the boxes size, and it changes monotonically and slowly 
from 1 to 2, which indicates the box-counting dimension is monotonic to the range of calculated 
box size. This phenomenon also occurs when calculating the box-counting dimension of river 
networks with other threshold areas.

Theoretically, only when the size of boxes converges to 0, can one get the true value of the 
box-counting dimension. However, in numerical analysis, the box size can not really converge to 0 
in mathematical terms. Our study suggests that in numerical analysis, smaller boxes can not 
necessarily bring more accurate results; in contrast, they sometimes make the results less accurate 
or even incorrect. Thus, the size of boxes does not necessarily need to converge to 0 in this 
numerical analysis.

It can be illustrated that the slope of the curve depends on the range of the box size, and it 
changes slowly from 1 to 2. The analysis shows that there is a theoretical causation of the 
unreliability of the box-counting method: the box length could only be limited discrete values and 
could not be less than the pixel length. This superficially dissatisfies the requirement of the 
definition of the box-counting dimension: the box-counting dimension is only reached when the 
box length is limited to zero. In contrast, at a scale smaller than the pixel, the generated river 
network is no longer fractal, which is natural for simulation at the pixel scale. Although the above 
preliminary conclusions are addressed, we cannot conclude from the analysis which range should 
be used to obtain the true fractal dimension unless further studies are carried out.

Relationship between the confluence area and the box-counting dimension

In this part, we calculate the box-counting dimension of Chabagou River networks, which is 
derived with threshold area from 22 to 7000. Results show they decrease as the threshold area 
increases.

From Fig. 5(a) and (b), it is found that the values of the box-counting dimensions vary 
according to the support area thresholds. Here the question arises of “identifying the exact value of 
the box-counting dimension of the real river channel”. For the increasing application of fractal 
dimension as a parameter in hydrological responses and catchments geomorphology, etc. it is of 
consequence to answer this question.
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Threshold area S
Fig. 5 Relationship between the threshold area and the box-counting dimension: (a) when threshold 
area is small, the fitting is D = -0.121n5 + 1.85 with 7?2=0.994; (b) when threshold area is large, the 
fitting is D = 2.9^50 with R2 = 0.87.

For different threshold areas, the behaviour of the change is different, and therefore should be 
discussed separately. When the threshold area is small (e.g. from 22 to 546), there is a logarithmic 
fit (cf. Fig. 5(a)) between the threshold area and box-counting dimension. The relationship can be 
expressed as D = -0.121nS + 1.85, with the coefficient of determination equal to 0.99. However, 
from the figure it is noticed that when S becomes large, the fitting line falls below the true data 
value. It is probably because the logarithmic function diverges when S becomes large, while the 
box-counting dimension converges to 1. Hence, when the threshold area is large (e.g. from 546 to 
7000), another behaviour is presented, which can be fit into a power law (cf. Fig. 5(b)) relation D 
= 2.9/T0'50. The results are consistent with the observation which indicates that when the threshold 
area increases, the box-counting dimension decreases to be closer to 1.

If the fittings are appropriate, we can obtain the box-counting dimension D of a certain 
network by S (the threshold area which defined the network). Also, based on our fittings, we carry 
on theoretical analysis in the future to provide the possibility of investigating the real fractal river 
network according to the relationship between S and D, which could eliminate the effect of 
threshold area. Figure 5(a) shows the logarithmic relationship between the values of box-counting 
dimension and the support area thresholds, which may be demonstrated by the multifractal theory.
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Our present work is only an exploratory approach, and further investigation remains to be done. 
Additional data from other natural rivers are needed in future investigations.

CONCLUSION

In the present work we have applied the digital elevation model (DEM) to analyse the box­
counting dimension of the Chabagou River channel. The results obtained in this work support the 
observation of the complicated nature of fractal river networks and the sensitivity of the character 
of river to the threshold of confluence area. (1) The box-counting dimension is monotonic to the 
range of box sizes while insensitive to the increment ratio of box sizes. (2) The box-counting 
dimension has a logarithmic dependence on S; D = -0.121ns + 1.85 for smaller threshold areas; it 
has a power law asymptotic behaviour D = 2.9Y0'50 for larger threshold areas.

In this paper an approach is proposed to evaluate the sensitivity of threshold area in box­
counting dimension calculations, and it is expected that real box-counting dimensions can be 
identified from the calculation. However, dimensions derived from this method are not accurate 
enough because of its dependence on the discreteness of box sizes. Meanwhile, considerable 
uncertainty coming from the fitting and calculation are added together and make the final result 
more inaccurate than we can accept. Moreover, these uncertainties are intrinsic and cannot be 
eliminated by technical advances such as use of a finer grid.

On the other hand, our research is based on the assumption that the river is mono-fractal. 
Nevertheless, there is all likelihood that the nature river networks are multifractal. No matter how 
mono-fractal or multifractal the river network is, the problem of scaling always exists.

The results presented in this paper only touch upon the geometrical properties of the river 
network, which may serve as a foundation for the analysis of scaling properties of hydrophysical 
and hydrological processes.
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