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Abstract The performances of two types of univariate time series model, i.e. the autoregressive moving 
average (ARMA) model and the long-memory fractionally integrated autoregressive moving average model 
(ARFIMA) model, for forecasting daily streamflows, are investigated in the present study. Both models are 
applied to four daily average discharge series of medium-sized watersheds in cold mountainous regions, and 
built on the basis of deseasonalized series. The result shows that both the ARMA model and the ARFIMA 
model work well for forecasting short-term daily average discharges, and the performance of the ARFIMA 
model is generally slightly better than that of the ARMA model. The use of the ARFIMA model is therefore 
recommended as an alternative to the conventional ARMA model for modelling univariate daily streamflow 
processes for the cold mountainous regions from the perspective of forecasting.
Key words streamflow process; ARMA model; long memory; ARFIMA model; time series analysis; 
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INTRODUCTION

When modelling streamflow processes in ungauged basins, we may sometimes have to deal with 
univariate streamflow processes. The most commonly used model for modelling univariate 
hydrological time series is the autoregressive moving average (ARMA) model (see Hipel & 
McLeod, 1994), which is a short-memory model, whose autocorrelation function (ACF) decays 
exponentially. However, since the early work of Hurst (1951), it has been well recognized that 
many time series, in diverse fields of application, may exhibit the phenomenon of long-memory or 
long-range dependence. In the hydrology community, many studies have been carried out on the 
test for long-memory in streamflow processes (e.g. Burlando et al., 1996; Montanari et al., 1997; 
Rao & Bhattacharya, 1999; Ooms & Franses, 2001; Wang et al., 2007). Burlando et al. (1996) and 
Montanari et al. (1997) applied the ARFIMA mode to the modelling of the daily water inflow to 
Lake Maggiore, and showed that the fit with an ARFIMA model is much better than the one 
provided by more traditional ARIMA models. But their result is based on the one single 
streamflow process, and the model performance comparison is based on the model-fitting 
residuals, without considering the performance for out-of-sample forecasting.

In the present study, the performances of ARMA and ARFIMA model for making 1- to 7- 
days ahead out-of-sample forecasts are compared for four daily streamflow processes in the cold 
mountainous regions of British Columbia in Canada.

METHODS OF MODELLING UNIVARIATE TIME SERIES

Autoregressive moving average (ARMA) model

The ARMA model is one of the most important and highly popularized time series models, and 
has a long history of being applied to streamflow forecasting problems (see Hipel & McLeod, 
1994). An ARIMAQ?, q) model is given by:

(1 - </\B------- </)pBp)xt = (1-QB-------- OqB^et (1)

where B is the backshift operator, that is, Bxt = xt.f C is a white noise process with zero mean and 
variance o2. When q = 0, then the ARMAQ?,#) model reduces to an AR(p) model.
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Fractionally integrated autoregressive moving average (ARFIMA) model

The ARFIMA model has not been widely accepted in the hydrology community so far. The 
general form of an ARFIMAQ?,¿/,^) model is given by:

(1 -frB--------</>pBf^dx, =(\-0ß-------- eqBq)s,, M < 0.5 (2)

where Vd= (1 - B)d can be given by means of the binomial expansion, and d denotes the fractional 
differencing parameter. A larger value of d indicated a stronger intensity of long-memory. When d 
= 0, equation (2) reduces to the classical ARMAQ?,#) model. The conventional ARMA process is 
often referred to as a short memory process because its autocorrelation function (ACF) p(h) decays 
exponentially as Zz—>oo, whereas the long-memory ARFIMA process is characterized by a hyper- 
bolically decaying autocorrelation function. In fact, it decays so slowly that the autocorrelations 
can not be summed.

Many methods for estimating the long-memory parameter d are available, which can be 
categorized into two classes: the heuristic and the parametric methods. The heuristic methods are 
useful to find a first estimate of d and to test if a long-range dependence in the data exists. The 
parametric methods obtain consistent estimators of d via maximum likelihood estimation of 
parametric long-memory models. They give a more accurate estimate of d, but generally require 
knowledge of the true model. The S-Plus function arima.fracdiff fits ARFIMA models to 
univariate time series data through the approximate Gaussian maximum likelihood algorithm of 
Haslett & Raftery (1989).

When forecasting from the univariate ARFIMA(/2,t/,0) model, we can express the 
process (1-^2?------- (/)pBpy^dxt= in the form of an infinite autoregression, where

__ HZ______ ßJ . The infinite autoregression may be truncated at a suitably high lag 
r(j+i)r(-¿) J

(say, 200), and the forecasts are then made recursively for multi-steps ahead.

DAILY STREAMFLOW DATA USED

Daily average discharge series of four watersheds in British Columbia, Canada, are used in the 
present study. All the four watersheds are located in cold mountainous regions where snow-melt 
water makes a considerable contribution to runoff. The description of the eight gauging stations is 
given in Table 1. The data are selected data so that the series should be approximately stationary, 
at least by visual inspection, and the time-span of the data ranges from 23 to 30 years. All the four 
daily series exhibit strong and regular seasonal variations.

MODEL BUILDING FOR DAILY STREAMFLOW SERIES

ARMA model

The procedure of fitting deseasonalized ARMA models to daily flow series includes two steps: 
deseasonalization and ARMA model construction. We first log-transform the data series, and

Table 1 Daily streamflow data used.
Gauging stations Area

(km2)
Latitude Longitude Period Avg, 

discharge 
(m3/s)

ACF(l)

Canoe River below Kimmel Creek 298 52.728 -119.408 1972-1994 14.5 0.9294
Columbia River Near Fairmont Hot Springs 891 50.324 -115.863 1946-1975 11.1 0.9676
Columbia River at Nicholson 6660 51.244 -116.912 1933-1962 107.5 0.9778
Fraser River at Mcbride 6890 53.286 -120.113 1959-1988 197.3 0.9582
Note: The ACF(l) is calculated based on log-transformed and deseasonalized series.
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deseasonalize the series by subtracting the seasonal (e.g. daily or monthly) mean values and 
dividing by the seasonal standard deviations of the log-transformed series. To alleviate the 
stochastic fluctuations of the daily means and standard deviations, we smooth them using the first 
eight Fourier harmonics.

In the present study, for simplicity, we considered using the ARQ?) model, that is, q = 0 in the 
ARMA(p,g) model, when using the ARMA model. The AR(p) model structure (listed in Table 2) 
for all the daily flow series are determined according to the Alkaike Information Criterion (AIC). 
The goodness of fit of the models are examined by inspecting the ACF of the residuals from the 
models, which indicates that there is generally no significant autocorrelation left in the residuals 
from all the AR models.

Table 2 AR(p) and ARFIMA(p,¿7,0) model structure for the streamflow series.
Gauging stations AR(p)

P
ARFIMA(p,t7,0)
P d

Canoe River below Kimmel Creek 10 3 0.31
Columbia River at Nicholson 35 3 0.4392
Columbia River Near Fairmont Hot Springs 6 8 0.4213
Fraser River at Mcbride 9 7 0.1886

ARFIMA model

Before fitting the ARFIMA model to a daily flow series, the existence of long-memory should be 
confirmed. The first heuristic indication of the presence of long-memory comes from the slow 
decaying ACF structure of the four deseasonalized daily series, as shown in Fig. 1. In addition, it 
has been shown (Wang et al., 2007) that all the daily flow series under consideration have 
significant long-memory.

Fig. 1 ACF of the log-transformed and deseasonalized daily mean discharge series.
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Similar to constructing the ARMA model to the daily streamflow series, the procedure of 
fitting ARFIMA models also includes two steps, i.e. firstly deseasonalize the data, and then 
construct the ARFIMA model. We only consider using the ARFIMA model of the structure 
(p,d,O). The deseasonalization is done in the same way as that for building the ARMA model. The 
order of the AR component and estimates of d for the fitted ARFIMA model of all the 
deseasonalized daily series are also listed in Table 2. The order p of the AR component in the 
ARFIMA model is determined according to AIC, and the parameters of the AR component and 
value of d are estimated using the function arfima.fracdiff in S-Plus. The examination of the ACF 
of the residuals from the ARFIMA models shows that no significant autocorrelations are observed 
in the residual series.

COMPARISON OF MODEL PERFORMANCES

Model performance measures

There is extensive literature on model forecasting evaluation indices. Despite its crudeness and 
identified weaknesses, the Coefficient of Efficiency (CE) introduced by Nash & Sutcliffe (1970) is 
still one of the most widely used criteria for the assessment of model performance. However, CE is 
a global measure for comparing the predicted value with the overall mean value; it is not efficient 
enough to evaluate the predictions for those series whose mean values change with seasons, which 
is almost always the case for hydrological processes. Therefore, a Season-Adjusted Coefficient of 
efficiency (SACE) (Wang et al., 2004) is used here for evaluating the model performance. SACE is 
calculated by:

È(a-â)2
SACE = 1 - -si--------------  (3)

Èfâ-â,)2 
Z=1

where Q. is the observed value; is the predicted value; Qm is the mean value of season /??; m = 
i mod S (mod is the operator calculating the remainder), ranging from 0 to S - 1 ; and S is the total 
number of “season”. Note that, a “season” here is not a real season. It may be a month or a day, 
depending on the timescale of the time series. For daily streamflow series, one season is one day. 
Furthermore, for daily series, the mean values of 365 days are smoothed using the first eight 
Fourier harmonics.

Besides the above two performance measures, the root mean squared error (RMSE) is also 
used in the present study.

Comparison of model performances

For each daily flow series, we make 1- to 7-day ahead forecasts for the last 5 years of data to 
evaluate the performance of the fitted model. Both the AR and ARFIMA models are built on a 
rolling-forward basis. For instance, we use the daily flow data of the Columbia River near 
Fairmont Springs in 1946-1970 to fit an AR(6) model, and make forecasts for 1971; then use the 
data in 1946-1971 to fit another AR(6) model, and make forecasts for 1972; etc. Data are log- 
transformed and deseasonalized before being used. The evaluation results for 1- to 7-day ahead 
forecasts are reported in Table 3. According to the values of performance measures, we see that:
(a) The measure CE shows that both models give good forecasts (i.e. the value of CE > 0.8) for 7- 

day ahead forecasts. But SACE shows that, although for all the cases both models can give 
forecasts significantly better than seasonal mean values for all lead times (i.e. SACE > 0), 
satisfying forecasts (i.e. SACE > 0.8) are available only for 1- to 3-days ahead for the 
Columbia River at Nicholson and Columbia River near Fairmont Hot Springs, for 1-day ahead 
for the Fraser River at Mcbride, and no satisfying forecasts are available, even for 1-day
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Table 3 Multi-step forecasting performances of ARMA and ARFIMA models.
Lead time (days) Measure Model 1 2 3 4 5 6 7
Canoe River RMSE ARMA 4.119 6.044 6.696 7.151 7.419 7.543 7.607
below Kimmel 
Creek

ARFIMA 4.122 6.046 6.692 7.143 7.406 7.525 7.583
CE ARMA 0.944 0.879 0.851 0.830 0.817 0.811 0.808

ARFIMA 0.944 0.879 0.851 0.831 0.818 0.812 0.809
SACE ARMA 0.719 0.394 0.256 0.152 0.087 0.056 0.040

ARFIMA 0.718 0.394 0.257 0.154 0.090 0.061 0.046
Columbia River RMSE ARMA 0.851 1.475 1.984 2.423 2.795 3.113 3.399
Near Fairmont 
Hot Springs

ARFIMA 0.848 1.468 1.971 2.405 2.774 3.089 3.372
CE ARMA 0.995 0.986 0.975 0.963 0.951 0.939 0.927

ARFIMA 0.995 0.986 0.975 0.963 0.951 0.940 0.928
SACE ARMA 0.974 0.921 0.858 0.788 0.717 0.649 0.582

ARFIMA 0.974 0.922 0.859 0.791 0.722 0.655 0.588
Columbia River at RMSE ARMA 6.157 11.962 17.263 21.944 25.997 29.498 32.469
Nicholson ARFIMA 6.102 11.844 17.084 21.729 25.723 29.220 32.220

CE ARMA 0.998 0.991 0.982 0.970 0.958 0.946 0.935
ARFIMA 0.998 0.991 0.982 0.971 0.959 0.947 0.936

SACE ARMA 0.983 0.936 0.868 0.786 0.700 0.613 0.531
ARFIMA 0.983 0.938 0.870 0.790 0.706 0.620 0.538

Fraser River at RMSE ARMA 30.893 52.331 66.262 75.012 81.011 85.403 88.747
Mcbride ARFIMA 30.885 52.286 66.153 74.813 80.684 84.939 88.178

CE ARMA 0.979 0.939 0.902 0.875 0.854 0.838 0.825
ARFIMA 0.979 0.939 0.903 0.875 0.855 0.839 0.827

SACE ARMA 0.888 0.677 0.483 0.337 0.227 0.141 0.072
ARFIMA 0.888 0.678 0.485 0.341 0.233 0.150 0.084

Note: the bold italic values denote better performances of ARFIMA model against ARMA model in terms of 
RMSE.

ahead for the Canoe River. The results illustrate that the measure CE exaggerates the 
performance of the forecasting models in cases where the streamflow processes have strong 
seasonality, whereas the SACE is a better alternative.

(b) Among the four cases, the ARFIMA model outperforms the ARMA model in three cases (the 
Columbia River at Nicholson, the Columbia River near Fairmont Hot Springs and the Fraser 
River at Mcbride) for all lead times, and outperforms the ARMA model for 3-days and longer 
lead time forecasts for the Canoe River, indicating its good modelling performance for the 
four cases under consideration in the present study.

(c) According to the performance measures CE and SACE, we see that the ARFIMA model and 
ARMA perform much better for the streamflows measured at Nicholson and near Fairmont 
Hot Springs for the Columbia River than those measured below Kimmel Creek for the Canoe 
River and at Mcbride for the Fraser River. This is probably because the streamflow processes 
for the Columbia River not only have significant snow-melt water contributions, but are also 
regulated by two lakes, i.e. Lake Koocanusa and Columbia Lake, which lead to stronger temp­
oral dependence and stronger intensity of long-memory, as indicated by larger values of 
ACF(l) (Table 1) and larger values of the long-memory parameter (Table 2) than those for the 
Fraser River and Canoe River.
The scatter plot of the one-day ahead predicted values versus the observed values for the four 

streamflow series with the ARFIMA models are shown in Fig. 2. From Fig. 2 we see that there is 
no systematic bias in the forecasts, and the results are generally satisfying, especially for the 
Columbia River.
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Fig. 2 Observed discharges versus 1-day ahead forecasts with ARFIMA models.

CONCLUSIONS

When modelling streamflow processes in ungauged basins, we may sometimes have to deal with 
univariate streamflow processes. In the present study, two univariate time series models, i.e. the 
autoregressive moving average (ARMA) model and the fractionally integrated ARMA (ARFIMA) 
model are applied to four medium-sized watersheds. The result shows that univariate time series 
models work very well for forecasting daily streamflow processes of the watersheds in cold 
mountain areas where snow-melt water makes a considerable contribution to runoff. According to 
the values of coefficient of efficiency (CE), satisfying 7-day ahead forecasts (CE > 0.8) are 
available for the four cases. According to the season-adjusted coefficient of efficiency (SACE), 
satisfying forecasts (i.e. SACE > 0.8) can be made for a lead time of three days for two out of four 
cases (i.e. for the Columbia River at Nicholson and the Columbia River near Fairmont Hot 
Springs), and one-day ahead satisfying forecasts are available for one case (the Fraser River at 
Mcbride). And the ARFIMA model built on the basis of deseasonalized daily streamflow series 
outperforms the ARMA model in all cases and all lead times except for 1- and 2-day ahead 
forecasts for the Canoe River. The use of the ARFIMA model can therefore be recommended as an 
alternative to the conventional ARMA model for modelling univariate daily streamflow processes 
from the perspective of forecasting for the watersheds where snow-melt water contributes 
considerably to runoff.
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