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Abstract We propose a stochastic modelling framework to simulate the spatially lumped sediment and 
vegetation dynamics in a flood plain of a braided gravel bed river as an alternative to detailed 
morphodynamic modelling. The idea is that floods intermittently erode the river bed and expose sediment on 
gravel bars, while riparian vegetation continuously recolonises the exposed area. The exposed sediment and 
water stochastic dynamics can be analytically solved in terms of their probability density function (pdf), and 
later used to force a vegetation model, together forming a so-called coupled “Master–Slave” stochastic 
dynamical system in continuous time. We apply and validate the master model by using a historical record 
of aerial photographs of the Maggia River (Tessin, Switzerland) and daily streamflow measurements. This 
approach is useful to statistically quantify the amount of sediment that is reworked by flood events, as well 
as the effects of changes in the flood disturbance regime on flood-plain dynamics. 
Key words  flood plain processes; river–vegetation interactions; sediment dynamics; stochastic models 
 
 
INTRODUCTION 
The interactions between fluvial and ecological processes in the alluvial zone of Alpine braided 
rivers are key at both basin and reach scales. At the basin scale, for instance, the river and 
sediment dynamics reflect the mechanisms of erosion, transport and deposition that determine the 
statistical equilibrium conditions of the basin from both geomorphological (e.g. mean river slope, 
grain size distribution, soil stratification, etc.) and hydrological (e.g. river and infiltration 
dynamics, groundwater recharge and flow, etc.) viewpoints. At the local reach scale, sediment 
dynamics frequently modify the alluvial zone by erosion and deposition processes as a function of 
inundation frequency and flow competence. This results in the exposure of new sediment surfaces 
and nutrient cycling, which create favourable conditions for the establishment and development of 
different types of riparian vegetation (e.g. herbaceous, shrubs, trees) and support ecological habitat 
diversity (Resh et al., 1988; Tockner et al., 2000). Moreover, flood events also play the role of 
“natural cleaners” for the ecotone, preventing vegetation from invading the whole riverine 
corridor. Hence, the importance of studying such dynamics under changing conditions, due to 
either anthropogenic or climatic causes, or their joint interaction. 
 Many Alpine rivers have been subject to water withdrawals for different water-use purposes 
(e.g. energy, municipal, agricultural, etc.), which typically remove the seasonal component from 
the natural streamflow regime. Undoubtedly, the new regime affects the dynamics of transport 
processes (sediment, nutrients, debris, etc.), river morphology, groundwater recharge, and fluvial 
ecotone biodiversity in the riparian zone (Leyer, 2005). This is also the case in the Maggia Valley 
(Canton Tessin, southeastern Switzerland), where the natural streamflow regime has been reduced 
to a practically constant baseflow release (EFR), punctuated by occasional floods due to either 
extreme rainfall or sporadic controlled releases from dams, or both. The composition and extent of 
riparian vegetation in the valley flood plain changes in response to streamflow variability, as can 
be seen in Fig. 1 (Molnar et al., 2008).  
 The processes occurring in the riparian zone are intrinsically complex and still poorly 
understood because of the numerous interactions and feedbacks between erosion, sedimentation, 
vegetation colonization, uprooting, etc. The study of the sediment dynamics in such environments 
must consider the active role of riparian vegetation in recolonising the gravel bars and islands that 
have been reworked by both erosion and sedimentation processes during flood events. Because of 
the coarse gravel material, only pioneer plants such as willow shrubs and herbaceous species, 
usually flourish in this zone, establishing and developing rapidly between flood events. In those  
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Fig. 1 Maggia valley, Canton Tessin, Switzerland. The left panel shows the braided reach of the 
Maggia River in the vicinity of Someo; the hatched area is chosen as the spatial domain for the lumped 
model. The right panel shows the trend of the different classes of morphological features in the flood 
plain. The vertical black dashed line indicates the approximate start year of the hydropower system 
operation in the valley. 

 
 
environments where the groundwater system may not strictly depend on river flow (e.g. Alpine 
valleys where groundwater recharge often originates from side valleys and slopes), vegetation 
growth is almost unaffected by water withdrawal. Gradually, the exposed sediment surfaces may 
be either partially or entirely colonized into more-or-less stable island patterns, which form the 
riparian corridor (Decamps, 1993). Some indication about the effects of hydrological changes (of 
either climatic or anthropogenic origin) can be obtained by studying the way freshly exposed areas 
are recolonised (e.g. see Decamps, 1993). Physically-based modelling of this process is complica-
ted because the available models generally do not contain a full process description including all 
relevant interactions and feedbacks. Often excessive parameterization is used, and because 
uncertainties also arise in parameter calibration, the consequent predictive capability of such 
models is limited to short-term predictions. We argue that a minimalist, physically-based model 
may be preferable when the dynamics of environmental systems are to be investigated over the 
medium to long term; see recent efforts by e.g. Lytle & Merritt (2004) and Camporeale & Ridolfi 
(2006).  
 In this work we propose such a minimalist modelling framework to describe the spatially-
lumped water and sediment dynamics of Alpine rivers. In particular, we aim at a coupled model 
consisting of a stochastic component (Master model), which describes the dynamics of the 
exposed sediment and water surface lumped at the river-reach scale. The dynamics of the 
complementary area occupied by vegetation is split into three main classes that evolve according 
to a Master-dependent model (Slave model). Although we focus on the statistical properties of the 
Master model in this paper, we also discuss the philosophy underlying the Slave model and its 
purpose. As far as the Master model is concerned, we end up with a model that is parsimonious in 
the number of parameters which can be reliably estimated from aerial photography. From a 
quantitative viewpoint, this approach allows for a fully theoretical formulation of the process with 
an analytical solution. The main variable of interest is the percentage of area that will be covered 
by riparian vegetation under given hydrological and climatic conditions. We apply the Master 
model to the River Maggia, where flow regulation for hydropower purposes has heavily affected 
the streamflow regime, and where we have a number of historical aerial georeferenced images of 
the flood plain forest. We first test the model assumptions and simplifications, and then we 
estimate the probability of having a given exposed area as a function of the streamflow regime. 

This paper is organized as follows: the next section deals with the description of the general 
modelling framework and the development of the main mathematical aspects of the Master model. 
In the Results and Discussion section we apply the Master model to the Maggia River and show its 
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performance for a number of example simulations. We point out both advantages and disadvan-
tages of our approach, and outline potential directions for future work.  
 
 
MODELLING FRAMEWORK 

We aim to explain sediment and vegetation dynamics in Alpine rivers as a consequence of 
stochastic disturbances by floods which rework the channel and flood plain, and the deterministic 
recolonisation of the exposed sediment by riparian vegetation. The evolution of each morphol-
ogical and vegetation class can generally be obtained from georeferenced aerial photographs (see 
Fig. 1 and Molnar et al., 2008, for an example of the Maggia River). A lumped representation of 
the flood-plain dynamics helps us to simplify the spatial and temporal complexity of the real 
process, but it nonetheless requires specific hypotheses in order to be applicable. These are: 
1. the process is active only in the period Tw (i.e. April–November), whereas it is inactive during 

the winter low-flow period Tc (i.e. December–March);  
2. flood disturbance occurs as a stochastic process, as it reasonably appears to be the case in the 

Maggia post-dam period, while colonization occurs deterministically;  
3. the alluvial sediment material has poor cohesive capacity, and it is potentially mobilized by 

flows that locally exceed the critical conditions for bedload transport;  
4. the area of exposed sediment and water simply increases as a consequence of an instantaneous 

stochastic flood event q exceeding a given threshold q* and inundating an area A(q). The 
corresponding erosion of the already vegetated channel occurs in successive stages (Fig. 2), 
i.e. grass is destroyed first, then shrubs and then forest, provided that the flood is large enough; 

5. the colonization dynamics occur in successive stages (Fig. 2), i.e. first grass will colonize the 
available exposed sediment area Asw, which then gradually turns into shrubs and then into 
forest.  

 

 
Fig. 2 Scheme of the Master–Slave modelling framework. The Master model describes the dynamics of 
sediment and water (SW), and is used to drive the Slave model which models the dynamics of the three 
classes of vegetation (G = grass or low stage vegetation; S = shrubs or middle stage vegetation;  
F = forest or high stage vegetation). 

 
 
 We propose a model whose origins are in dynamical system theory (e.g. see Sprott, 2003), i.e. 
a “Master–Slave” model, where the Master component is an idealized stochastic process in 
continuous time (Cox & Miller, 1965). The modelling scheme is shown in Fig. 2. We assume that 
our system can be studied at the medium to long term assuming statistical equilibrium conditions. 
This way, the fluctuations imposed by the stochastic modelling component reflect the natural 
system variability and are the result of inherent system complexity. In the following, we provide 
the model equations, referring the reader to Perona et al. (2008) for details about the derivation 
and related mathematical properties of the model. We denote with AG the surface of the flood plain 
occupied by low-stage vegetation (e.g. grass and small plants), AS the surface occupied by middle- 
stage vegetation (e.g. shrubs and young trees), and AF the surface occupied by adult vegetation 
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(e.g. forest with mature trees). The total vegetated area is Av = AG + AS + AF, which together with 
that of sediment and water Asw complements the floodable area in the domain Af. By defining Ai,j = 
Ai + Aj the model assumes the following mathematical form, equations (1)–(4):  
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where , , and F FC k A= ⋅G G sw  are the colonization rates of the low-stage, of 
the middle-stage and of the adult vegetation, respectively. ΔAsw = A(q) – Asw defines the flooding 
event potential in exposing new sediments and Θ(⋅) is the Heaviside step function that 
conditionally activates the different terms of the equation. Equations (1)–(4) are coupled to each 
other. Equation (1) is independent from equations (2)–(4) and defines the Master model.  
Equation (1) expressively accounts for the low-stage (grass) vegetation colonization dynamics, 
while equations (2)–(4) describe the evolution of the single classes of vegetation as a function of 
the current disturbances and the actual availability of exposed sediment and water. Because the 
latter information comes from the Master model, then equations (2)–(4) are driven by it and 
therefore define the “Slave” model. Altogether, the system of equations (1)–(4) defines a 
stochastic Master–Slave model in continuous time, whose dynamics, as far as the Master model is 
concerned, can be cast in probabilistic terms and then solved analytically by means of the theory of 
stochastic processes. This is discussed in the next subsection.  
 
The Master model for the sediment and water dynamics 

At a given time, the river reach shown in Fig. 1(a) has a total floodable surface Af, a portion of 
which is made up of sediment and water Asw, and the remainder, Av, is occupied by vegetation, i.e. 
Af = Asw + Av. We study the evolution of Asw resulting from the action of sporadic flood 
disturbances q and the subsequent tendency of vegetation to recolonise the exposed area. Erosion 
and deposition are assumed to occur during floods above a given threshold q*. The distribution of 
the event magnitude q ≥ q* is assumed to be exponential, i.e. b q , with mean ( *)( ) q qe λλ − −=

22 *))2(*2( λλλσ qqq ++=λλμ *)1( qq +=  and variance , and λ being the only fitting 

parameter. Because the inter-arrival time among events τ is also exponentially distributed, a 
sequence of such disturbances defines a Poisson process of rate ρ (e.g. see Cox & Miller, 1965), 
which is the inverse of the average inter-arrival time τ  = 1/ρ. 
 The flood disturbance events affect an area A, which can readily be obtained from the 
hydraulic rating curve A(q) for the flood plain (Fig. 3). This relationship may be obtained from a 
detailed 2D-hydraulic model (Ruf et al., 2008), and it allows us to set the modelling approach on a 
sound physical basis. We assume the rating curve to be a power law  with k1 and k2 as 
fitting parameters, upper-limited at Af when the flow qf floods the entire domain. Although the 
rating curve is expected to change locally when flood events modify the river morphology, we 
assume it does not change in the upper part, i.e. for streamflow values q ≥ q*. By means of a 
derived distribution approach (see Perona et al., 2008), we obtain the probability density function 
of the areas reworked by flood events g(A). This is made of a continuous part and of an atom of 
finite probability for A = Af: 

2
1( ) kA q k q=
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In equation (5) the constants a0, a1, and a2 are the result of algebraic simplification; their 
expressions can readily be derived or taken from Perona et al. (2008). This distribution can be 
integrated in order to obtain the cumulative probability distribution G(A) which must satisfy the 

integral condition   
*

( ) 1fA

A
g A dA =∫

 In order to proceed with the probabilistic formulation of the process we first rewrite equation 
(1):  
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which shows that the first term on the right hand side is the stochastic disturbance A occurring at 
the generic time ti with a probability of occurrence in the time interval dt equal to ρdt, and applied 
as an instantaneous event through the Dirac delta function δ(⋅). This Poisson process is marked 
(e.g. Rodriguez-Iturbe et al., 1999) in that the event magnitude is also random and follows the 
exponential distribution b(q) (Fig. 4(a),(b)). Memory effects due to consecutive events are there-
fore not directly described in the erosion process. However, these are partially accounted for by 
using a time (e.g. daily) average instead of the actual flood peak when defining the magnitude of 
the stochastic disturbances. Notice, that equation (6), which defines the evolution equation of the 
process, shows disturbances being effective conditionally to the value of the current exposed area 
Asw (Fig. 4(c)). The stationary properties of the stochastic process (6) are described in Perona et al. 
(2008), together with the mathematical details that lead to the Kolmogorov master equation 
describing the continuous part of the probability density function pc(Asw) of the process:  
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for Asw ∈ [0,Af). By taking advantage of the integral relationship
0

( ) (
swA

sw sw swp A dA P A=∫ , 

equation (7) can be transformed into a first order homogeneous ordinary differential equation: 
 

Fig. 3 Effect of disturbances on the erosion and deposition process. By means of the rating curve, flood 
events q above the threshold q* may expose an area A conditionally to the current exposed area Asw. 
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that, together with the condition for the atom of probability at Asw = Af 
( ) 1 ( )

f
c

sw sw
at
AfP A A A p= − Θ −  allows us to find an analytical solution of the process. This solution 

has a rather cumbersome expression involving a linear combination of exponential integral 
functions and therefore is not shown here, but can be obtained upon request from the authors.   
 
 
RESULTS AND DISCUSSIONS 

Before discussing the application to the Maggia case, it is instructive to show a number of example 
cases that can be obtained by means of the analytical solution of equation (8). These are shown in 
Fig. 5 as a compilation of stationary cumulative and density distribution functions corresponding 
to a varying colonization rate parameter kG and inter-arrival time between the disturbance events. 
We obtain two limiting cases of completely deterministic asymptotic dynamics when kG either 
tends to zero or becomes (hypothetically) infinite. 
 
Case 1: kG → ∞  

If the colonization rate parameter becomes very high (or infinite, at the limit) then stationarity for 
equation (6) is obtained by studying the limit for which: 

( ( ) ) ( ) ( ( ) ) 0lim
G

i sw i i sw swGk
A t A t A t A k Aδ

→∞
− Θ − − =  (9) 

This happens only for Asw→0, given that the vegetation will recolonise the available surface of 
exposed sediment at an infinite rate. Hence, the corresponding probability distribution degenerates 
into an atom of finite probability of having Asw = 0 (e.g. see Fig. 5(a.1), (b.1)). A similar situation 
occurs if the mean arrival rate of disturbances ρ approaches 0, which means an infinite inter-
arrival time τ between events. In this case, vegetation has the time to recolonise the whole flood-
plain (e.g. see Fig 5(c.1), (d.1)).   
 
Case 2: kG → 0  

If no colonization occurs, i.e. kG = 0, then the stationary property for equation (6):  

( ( ) ) ( ) ( ( ) ) 0sw
i sw i i sw

dA A t A t A t A
dt

δ= − Θ − =  (10) 

Fig. 4 Exponential distributions (a) for the event magnitudes above the threshold of q* = 175 m3/s, and 
(b) the related inter-arrival time between the events (b) for the process with estimated parameters. An 
example of a numerically generated process with event magnitude conditional dynamics is shown in (c).
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Fig. 5 Cumulative (columns a,c) and probability density (columns b,d) functions of the Master 
process for the variable Asw for varying colonization rate parameter kG in the range {0 ÷ ∞}(columns 
a and b) and for varying mean inter-arrival time of disturbances τ = 1/ρ (columns c and d). The 
continuous line is the distribution of the inundated area as flooded by streamflow events, whereas the 
dashed line is the distribution of the resulting process influenced by the deterministic colonization 
dynamics.  

is automatically and forever satisfied the first time an event of magnitude A = Af does occur, which 
imposes Asw = Af. Thus, the stationary probability distribution function degenerates into an atom of 
finite probability of having Asw = Af  (e.g. see Fig 5(a.6), (b.6)). 
 A more likely true situation occurs for cases with intermediate values of the parameters, 
which lead to the other exemplary distributions shown in Fig. 5. Our simple process shows that the 
sediment dynamics can easily be conditioned by few fundamental parameters, either of 
hydrological (τ and λ) or of biological (kG) origin. Accordingly, a fundamental result of this 
approach is its relevance with regard to regulated riverine environments. Specifically, our model 
shows that by artificially conditioning the river hydrology, a different statistical equilibrium for the 
flood-plain dynamics can be reached in terms of mean vegetation cover or the complementary 
exposed sediment surface. It is therefore interesting to show the applicative aspect of this model 
for the Maggia Valley case. As described in Perona et al. (2008) one can either estimate the  
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Fig. 6 Results of (a) the Master and (b) the Master–Slave models and (c) comparison with observations 
for the case with estimated parameters and related analytical pdf. Observations agree well for all the 
classes of coverage described by the models, including the slow increasing trend of the adult vegetation 
(forest) AF.    
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model-parameters, or calibrate them from aerial photographs by using a simple error minimization 
technique. In this paper, we show the modelling results for the case with estimated parameters. 
First of all, the parameter estimation is done starting from the available aerial photographs in the 
post-dam period with measured streamflow, e.g. where the releases to the river during extreme 
events clearly assume a stochastic footprint. We determined an average colonization rate 
parameter kG

 = 0.000614 d-1 by computing the exponential decay of the decreasing exposed 
sediment and water surface for the period 1995–1999, where no significant disturbances are 
observed, and fixing the threshold at q* = 175 m3/s. This colonization rate will be an under-
estimate because it is likely that some disturbance in the period in reality did occur. We then use 
historical hydrological inputs to drive the model with estimated parameters, and study how it 
captures the main behaviour of the sediment and water dynamics (Fig 6(a)). By means of the 
analytical solution we can also compute the related pdf g(Asw), the mean of which (598 000 m2) 
agrees rather well with that obtained from observations (525 000 m2). Moreover, we use the 
Master model to steer the Slave model and to obtain an explicit quantification of the evolution of 
the vegetation classes on the flood plain (Fig 6(b)). In this case, also, the results are encouraging 
and capture the essential features of the natural dynamics. 
 
 
CONCLUSIONS 

In this paper we propose a stochastic Master–Slave model for the sediment and vegetation 
dynamics in an Alpine regulated river, and discuss the main characteristics of the Master model. 
The theoretical formulation and the related analytical solution allow us to obtain the probability 
density function (pdf) of the exposed sediment area lumped in space. In order to validate the model 
we applied it to the Maggia River (southeastern Switzerland) where a historical record of aerial 
photographs of the studied river reach is available. Model parameters were entirely estimated from 
aerial photographs and from daily streamflow records, and showed good agreement with 
observations. We see the potential of this modelling approach in making statistical predictions of 
the effects of changes in the flood disturbance regime on flood plain sediment and vegetation 
dynamics. 
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