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Abstract In 1991, the US Geological Survey began the first cycle of its multidisciplinary National Water 
Quality Assessment Program. The Program encompasses 51 river basins that collectively account for >70% 
of the total water use (excluding power generation), and >50% of the drinking water supply in the USA. One 
aspect of the first cycle included representative bed-sediment sampling within each of the river basins. 
Sampling sites were selected to represent the most important land-use categories (e.g. agriculture, 
undeveloped, urban) in each river basin. Both urban percentage and population density were the only land-
use/socio-economic factors that significantly affect sediment-associated chemical concentrations, with the 
latter appearing to be more significant/consistent than the former. The affected constituents, in decreasing 
order were: Pb > Hg > Ag > Zn > Cd > Cu > Sb > S > Ni > Sn > Cr > As = TC > Co = Fe = P = TOC. 
Key words  sediment chemistry; land use; trace elements; major elements; carbon; sulfur 
 
 
INTRODUCTION 

Since the publication of the Hawkes & Webb (1962) treatise on geochemical exploration, as well 
as the subsequent publication of various geochemical atlases (e.g. Webb et al., 1978), there is a 
widely accepted perception that land use as well as local mineralogy/petrology (geology) can 
affect fluvial and/or lacustrine sediment chemistry. There are many studies describing the effects 
of ore deposits as well as abandoned and/or ongoing mining/smelting operations on aquatic 
chemistry (e.g. Allan et al., 2002). Evidence for the effects of other types of land use on water 
quality have come from divergent studies that have attempted to relate land use to surface and 
groundwater chemistry (e.g. Fitzpatrick et al., 2007), sediment/soil chemistry (e.g. Reimann et al., 
2007), and ecological analyses (e.g. Venne et al., 2006). The advent, and subsequently successful 
application of sediment “fingerprinting” and source ascription to fluvial sediments and flood-plain 
deposits, has provided additional support for the view that land use can affect sediment chemistry 
(e.g. Collins & Walling, 2002).  
 In 1991, the US Geological Survey (USGS) began the first cycle of its multi-decadal, multi-
disciplinary, National Water Quality Assessment (NAWQA) Program. The first cycle of the 
program encompassed 51 river basins (study units) that collectively accounted for >70% of the 
total water use (excluding power generation), and >50% of the drinking water supply in the USA 
(Hirsch et al., 1988; Leahy et al., 1990). The selected river basins represent a range of hydrologic 
settings, rock types (geology), land-use categories, and population densities (Fig. 1). About one-
third of the basins are under active investigation for about 3 years at a time; hence, it took 9 years 
to complete the first cycle. The first cycle included a substantial ecological and bed sediment sam-
pling and analysis component in conjunction with the collection/concatenation of a wide variety of 
ancillary data including land-use percentages, drainage area, annual discharge, underlying rock 
type, and population density (Hirsch et al., 1988; Cuffney et al., 1993; Gilliom et al., 1995). 
Sampling sites were selected to represent important land-use categories (e.g. agriculture, urban) 
within each basin (Fig. 1). More than 1200 sites were sampled over the 9-year period.  
 The NAWQA bed sediment data from low population density agricultural and undeveloped 
sites were used to establish baseline concentrations for selected major and trace elements, as well 
as for total and organic carbon (TC, TOC), phosphorus (P), and sulfur (S) for the conterminous 
USA. In addition, based on the ancillary data, all the samples were subdivided according to 
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Fig. 1 Map of the NAWQA study units and the location of all the bed sediment sampling sites. 
 
 
predominant land use (e.g. agriculture, urban), underlying rock type (e.g. metamorphic, intrusive), 
and population density, and were evaluated against the NAWQA baseline values to determine 
which factor(s) (geology, land use, and/or population density), if any, affected sediment chemistry. 
The results from those comparisons/evaluations are described herein.  
 
 
METHODS 

Wherever possible, sampling sites within each study unit were chosen to represent specific land-
use categories; in some instances, additional nearby sites were selected to provide upstream/down-
stream comparisons, or to address land-use gradients. Additional sites were sampled if they 
represented areas of known and/or likely contamination. Lastly, where feasible within each study 
unit, at least two sites were selected to try to establish local baseline concentrations.  
 Sediment sampling was restricted to summer and/or autumn low-flow periods to help 
minimize seasonal variability (Gilliom et al., 1995). Sediments were collected with a variety of 
pre-cleaned, non-contaminating devices. On-site sampling was limited to clearly identifiable 
depositional zones likely to contain substantial amounts of fine-grained sediment. Between 5 and 
10 zones per site, near both banks and the centre of the stream, were identified and sampled. The 
resulting subsamples were composited and thoroughly mixed. Finally, composites for inorganic 
analyses were wet sieved with native water on site, through 63-µm nylon cloth, to limit the “grain-
size effect” and to further facilitate subsequent spatial and temporal comparisons (Horowitz, 1991; 
Shelton & Capel, 1994).  
 The USGS analysed the bed sediment samples for a variety of inorganic constituents, as well 
as total and organic carbon and total sulphur, following procedures detailed in Arbogast (1996). 
All samples were air-dried prior to analysis. The analyses generated total (≥95% of the constituent 
present) rather than total-recoverable concentrations. Precision and bias were monitored for all the 
analytical procedures through the concomitant analyses of a variety of NIST (National Institute of 
Standards and Technology) and USGS reference materials, as well as replicate samples. Based on 
the replicate reference material analyses, precision was better than ±10 to 15%, depending on the 
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constituent; no bias was detected (Arbogast, 1996). However, when sediment-associated chemical 
concentrations approached their respective reporting limits, precision could be as poor as ±100%.  
 
 
ANCILLARY DATA 

The upstream drainage area for each bed-sediment sampling site was calculated using Geographic 
Information Systems (GIS) and Environmental Systems Research Institute (ESRI) software. The 
same process was used to calculate the percentage of upstream generalized rock type(s) using the 
polygon coverage from the digital version of King & Biekman’s (1974) Geology of the 
Conterminous United States. GIS was also used to classify each site according to its dominant 
upstream land use(s). These land-use classifications were obtained from an enhanced version of 
the USGS 1992 National Land Cover Data (NCLD) set, which established dominant land use for 
each 30 m × 30 m grid covering the conterminous USA (Vogelmann et al., 2001; Nakagaki & 
Wolock, 2005). This led to four initial classifications based on a fixed set of criteria: agricultural, 
urban, undeveloped, and mixed (Gilliom et al., 2006). The agricultural sites were also subdivided 
into pasture or cropland, and the undeveloped sites also were subdivided into forested or rangeland 
(Mueller & Spahr, 2006).  
 Data from both the 1990 and 2000 censuses were used to assess the population density for 
each of the NAWQA study units (Hitt, 1994). While the issues of urban gradients and changing 
amounts of urbanization (increasing amounts of impervious surface) are not directly addressed 
herein, population density, per se, represents a significant socio-economic factor that has, in the 
past, been positively correlated with changing fluvial sediment chemistry (e.g. Horowitz et al., 
1999; Rice, 1999). Hence, upstream population densities were determined for each sampling site. 
As the first cycle of the NAWQA Program spanned nearly a decade, the mean population density 
(people (p) km-2) determined from both the 1990 and 2000 censuses was used in this study.  
 
 
RESULTS AND DISCUSSION 

NAWQA data were filtered prior to any statistical calculations and subsequent interpretations. The 
set was initially culled to eliminate any sites known and/or suspected of being affected by mining 
or mining-related activities because even though mining or ore-processing tend to be geographic-
ally limited, they can exert an areally and compositionally extensive downstream influence over 
fluvial sediment chemistry (e.g. Moore & Luoma, 1990; Salomons, 1995; Grosbois et al., 2000) 
and hence, would heavily skew the results for other land-use categories or geologic factors.  
 A second issue was when/how to assign a specific land-use category to each sampling site be-
cause the estimates for the non-mining related locations typically ranged from <1 to >99% for 
most of the categories used in this study. While there were a few sites that could be termed “true 
end-members” for any one land use (e.g. ≥90%), the majority represented some type of mixture; 
albeit, usually one category was dominant. Hence, for the purposes of this study, a ≥50% cutoff for 
a singular land-use category was used. If no one land-use category represented ≥50%, the site was 
termed “mixed use”. As a result, mixed-use sites were included in the estimation of baseline 
values and in assessing the effect of population density and rock type (geology), but could not be 
used to estimate the chemical effects for a specific land-use category. Please note that the effect of 
upstream drainage area, mean annual discharge and rock type, as well as the agricultural (pasture 
and cropland), and undeveloped (forested and rangeland) land-use categories displayed very 
limited or no detectable effects on sediment chemistry. Hence, they are not covered in the 
following sections.  
 Background and baseline are concepts that tend to be used interchangeably in the literature. 
However, background concentrations usually refer to elemental levels that imply the exclusion of 
anthropogenic effects, whereas baseline concentrations typically are determined at a particular 
point in time and space (e.g. Gough, 1993). With the advent of the Industrial Revolution, and the 
concomitant aeolian and fluvial distribution/redistribution of a wide variety of materials and their 
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associated chemical constituents, it is unlikely that true background concentrations can be 
determined from any surficial material (e.g. Reimann & Garrett, 2005). Hence, a subset of the 
NAWQA data was used to establish geochemical baselines. Since baseline concentrations can 
change spatially and temporally, and are more likely to represent a range rather than a single value 
(e.g. Reimann & Garrett, 2005), those determined for the NAWQA sites could be viewed as 
decadal (1990–2000) geochemical “snapshots” for the conterminous USA.  
 For purposes of this study, average baseline values are defined as the median chemical con-
centrations associated with sites that are: (a) predominantly agricultural or undeveloped; (b) where 
urban land use was ≤5%; and (c) where population densities were ≤50th percentile (≤27 p km-2). A 
total of 448 sites met the three criteria. Summary statistics for these sites were calculated (Table 1). 
Where the concentrations were neither at, or near, the reporting limits of the analytical procedures, 
the median absolute deviation (MAD) tended to be on the order of 20 to 30% (Table 1). The 
NAWQA median baseline values are not substantially different from those reported for either 
global (e.g. Bowen, 1979) or national (e.g. Shacklette & Boerngen, 1984; Horowitz, 1991; 
Gustavsson et al., 2001) data sets that are based on sediment and/or soil samples collected from 
the conterminous USA. As the Mississippi River drains more than 70% of the conterminous USA 
(e.g. Meade, 1995), NAWQA baselines also were compared to median values generated for more  
 
 

Table 1 Baseline chemical concentrations and summary statistics for the NAWQA bed sediment samples. 

  Al Sb As Ba Be Cd Ca Ce Cr 
  (%) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (%) (mg kg-1) (mg kg-1) 
Count 448 446 447   447 448 445 447   447 447 
Min.     0.2     0.1     0.1       7.0     0.1     0.1     0.1     12     6.3 
Max.   13.0     3.7   60 1300     7.0     2.8   28   360 270 
Mean     6.0     0.8     8.1   470     1.6     0.5     3.0     79   66 
Median     5.9     0.7     6.6   490     1.8     0.4     1.8     69   58 
MAD     1.0     0.2     2.2   110     0.8     0.2     1.3     15   13 

  Co Cu Fe La Pb Li Mg Mn Hg 
  (mg kg-1) (mg kg-1) (%) (mg kg-1) (mg kg-1) (mg kg-1) (%) (mg kg-1) (mg kg-1) 
Count 448 448 448   447 448 448 447   448 448 
Min.     0.5     1.0     0.2       6.3     2.0     3.0     0.04     15     0.01 
Max.   78 150   10   190 200   97     4.3 9000     3.1 
Mean   14   24     3.3     42   24   33     1.0 1100     0.08 
Median   12   20     2.9     39   20   30     0.9   840     0.04 
MAD     4.0     6.0     0.7       8.0     6.0   10     0.4   360     0.02 

  Mo Ni P K Se Ag Na Sr S 
  (mg kg-1) (mg kg-1) (%) (%) (mg kg-1) (mg kg-1) (%) (mg kg-1) (%) 
Count 448 447 447   447 447 445 447   448 439 
Min.     0.3     1.0     0.02       0.03     0.1     0.1     0.02     17     0.03 
Max.   13 160     0.47       3.1     5.6     4.3     2.2   970     1.5 
Mean     1.1   28     0.11       1.4     0.8     0.3     0.7   160     0.12 
Median     1.0   23     0.10       1.5     0.7     0.2     0.6   150     0.08 
MAD     0.0     7.0     0.02       0.3     0.2     0.1     0.3     60     0.04 

  Sn V Zn Ti OC TC    
  (mg kg-1) (mg kg-1) (mg kg-1) (%) (%) (%)    
Count 433 448 448   444 425 426    
Min.     1.2     5.1     5.2       0.04     0.01     0.7    
Max.   54 380 430       1.9   25   25    
Mean     2.8   92 100       0.38     3.7   4.5    
Median     2.5   83   91       0.33     2.4   3.3    
MAD   <0.1   21   20       0.08     1.1   1.6    
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than 10 years of Mississippi River Basin suspended sediment samples collected as part of the 
revised USGS National Stream Quality Accounting Network Program (Horowitz et al., 2001; 
Horowitz, unpublished data) and with surficial bed sediments collected from Lake Ponchartrain 
(Manheim & Hayes, 2002). According to Manheim (pers. comm., 2007), the latter samples are 
likely to represent Mississippi River Basin sediment-associated concentrations extant around the  
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Fig. 2 Change ratios (CRs) for the NAWQA ≥50% and ≥90% urban sites, and for those with the ≥50th 
and ≥90th population percentiles. CRs are calculated by normalizing the median chemical 
concentrations for a particular land-use or socio-economic factor to median chemical baseline 
concentrations. Obviously, if the ratioed values were the same, the CR number would be 1. However, 
by subtracting 1 from the ratio, no difference would be 0, negative numbers indicate depletions and 
positive indicate enhancements. Calculated CRs were rounded to the nearest tenth. Using this approach, 
a CR of +1 would indicate that the land-use concentration was double the baseline value, +3 quadruple 
the baseline value, etc.; negative CRs cannot be lower than –1; hence, a CR of 0.5 indicates that the 
land concentration is half the baseline value. CRs of <±0.3 should be viewed as falling within the range 
of analytical/sampling error and/or natural geochemical variance and are not considered significant; the 
rest are highlighted by cross-hatching in the graphs.  
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beginning of the 20th century as dredging has brought older material to the surface of the lakebed. 
Although the data from Lake Ponchartrain and the Mississippi River Basin are not markedly 
different from the range of NAWQA baseline values, modern Mississippi River suspended 
sediments appear somewhat elevated in As, Ba, Cr, Cu, Pb, Mn, Hg, Ni, Se and Zn, and somewhat 
depleted in TOC; contrariwise, the NAWQA baseline values appear marginally elevated in Cd, 
Co, Fe, Mn, Se and TOC, relative to older (Lake Ponchartrain) sediments.  
 Urban land use appears to exert a substantial control on downstream sediment chemistry  
(Fig. 2). The group of affected sediment-associated constituents reads like the “usual list of 
suspects” typically found within and downstream from urban areas; these constituents, and their 
potential sources have been identified in numerous prior studies (e.g. Ellis, 1999; Horowitz et al., 
1999; Old et al., 2003; Horowitz et al., 2008). The list includes such trace elements as As, Sb, Cd, 
Cu, Pb, Hg, Ag and Zn; such major elements as Fe, Mn, and S; as well as P, and both TC and TOC 
(Fig. 2). Trace elements display the largest enhancements (change ratio (CR + 1)), ranging from a 
low of 1.5 times (e.g. Sb) to as much as nearly 5 times baseline (Pb). Although the patterns can be 
somewhat noisy, most of the urban-affected constituents tend to display substantially increasing 
concentrations with increasing urban percentages (Fig. 3(a)).  
 The correlation between percent urban and population density is 0.92 (P < 0.001; n = 94); 
thus, it is not surprising that the latter also exercises a substantial control on the same group of 
constituents (Fig. 2). The effect of population density also has been noted in previous studies (e.g.  
Horowitz et al., 1999; Rice, 1999). However, there are some interesting differences between the 
two factors. Population density enhancements (CR + 1) are not as substantial as those for percent 
urban (Fig. 2). Further, for many constituents, population density does not begin to exercise a 
substantial effect until it reaches at least the 50th percentile (i.e. >27 p km-2; Fig. 2). As with the 
percent urban land-use category, numerous constituents display substantially increasing 
concentrations with increasing population density; however, the patterns for the latter tend to rise  
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Fig. 3 A comparison of changes in sediment-associated chemical concentrations with: (a) urban 
percentage, (b) population percentile, and (c) 50% urban sites re-ordered and plotted by population 
percentile (see text). All concentrations are in mg kg-1 except for TC and TOC, which are in weight 
percent (%). 
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more steadily, and are markedly less noisy (Fig. 3(b)). Also, the correlations for sediment-
associated chemistry and population density tend to be higher than those for percent urban. Lastly, 
Co, Fe, P, and total S display increasing concentrations with increasing population density, but not 
with increasing urban percentage (not shown). The seemingly more consistent results obtained using 
population density, relative to urban percentage, may well result because the former are based on 
direct counting (census data), whereas the latter are based on potentially less precise photo 
interpretations. It also may be possible that population density incorporates other factors (e.g. 
industrial activity) that could affect constituent concentrations, than are represented by urban 
percentage. The relatively low population density at which constituent effects begin to occur (the 
50th population percentile; >27 p km-2) could be viewed as potential support for this contention. 
Based on the foregoing, it appears that population density represents a better surrogate for 
predicting the presence of elevated sediment-associated constituent concentrations than urban 
percentage.  
 It is possible to combine percent urban and population density into a single composite factor 
by re-ordering all the designated urban (≥50%) sites by population density, recalculating the CRs, 
and replotting the data based on population percentile. When this is done, the CRs (not shown) for 
the enhanced constituents approach those that were determined based on percent urban; however, 
the linear plots for concentration vs increasing population percentile, while smoother than those 
obtained for urban percentage, are still noisier than those based purely on population percentile  
(Fig. 3(c)). Further, although the revised plots do pick up the patterns of increasing Co, Fe, and 
total S, they still do not for P, as occurred with the pure population density plots. Hence, it appears 
that using a combination of percent urban and population density tends to incorporate some of the 
advantages/benefits of both factors, albeit not all of them. Relative to the calculated enrichment 
factors [(CR+1) in parentheses], the sediment-associated constituents most affected, in decreasing 
order of enrichment are: Pb(4.6) > Hg(4.0) > Ag(3.6) > Zn(3.4) > Cd(3.0) > Cu(2.9) > Sb(2.0) > 
S(1.9) > Ni(1.7) > Sn (1.6) > Cr(1.5) > As(1.4) = TC(1.4) > Co(1.3) = Fe(1.3) = P(1.3) = TOC(1.3).  
 
 
SUMMARY 
(1) Median baseline concentrations for trace and major elements, P, and carbon (total and total 

organic) for fine-grained (≤63-µm) bed sediments collected as part of the USGS NAWQA 
Program are not substantially different from those reported for other sediment and/or soil 
samples that have been collected from the conterminous USA, or globally.  

(2) Most land-use categories (e.g. agriculture, forested, rangeland), upstream/underlying rock 
type, upstream drainage area, and annual discharge do not appear to exert a substantial 
influence on the chemical composition of fine-grained bed sediments.  

(3) Contrariwise, human activities, as indicated by percent urban and population density, seem to 
exercise a significant influence on sediment-associated chemical concentrations.  

(4) Population density appears to exert a more consistent influence on sediment chemistry than 
urban percentage, possibly because: (a) it can be measured more accurately; and/or (b) it is a 
better measure of urban percentage; and/or (c) it is a better measure of other anthropogenic 
activities likely to increase sediment-associated chemical concentrations.  

(5) Relative to baseline concentrations (change ratios (CR)), the constituents most affected by 
urban percentage/population density are, in decreasing order of enrichment: Pb > Hg > Ag > 
Zn > Cd > Cu > Sb > S > Ni > Sn > Cr > As = TC > Co = Fe = P = TOC.  
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