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Abstract Physically-based distributed models are increasingly being used to predict the behaviour of 
hydrological processes in data-sparse regions. However, a model is a simplified representation of the real 
system and some form of calibration cannot be avoided. Because distributed models have large numbers of 
parameters to be specified, the resulting parameter estimation problem becomes ill conditioned. In this study 
we investigate a calibration approach that uses: (a) a simple form of spatial regularization (using scalar 
multipliers) to reduce the dimension of the calibration problem, and (b) signature measures targeting specific 
behavioural response of a watershed system to guide the parameter search towards a more “hydrologically 
consistent” set of parameters. Signature measures are applied as “regularization constraints”, in an approach 
that is functionally similar to “Tikhonov regularization”, and which results in a better-conditioned 
optimization problem compared to the benchmark case. The approach is demonstrated for the Blue River 
Basin in Oklahoma, USA. 
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BACKGROUND 
While spatial discretization of the domain in a distributed hydrological model can provide more 
useful information about the spatial heterogeneity of the watershed, it also increases the 
complexity of the parameter estimation problem by increasing the number of unknown parameters. 
One way to tackle the problem of high dimensionality is to recognize that the spatially distributed 
elements of the model parameter fields are not independent entities that can take on arbitrary 
values in the parameter space. Instead, their values are somehow related to the spatial distributions 
of various hydrologically-relevant watershed characteristics including, for example, geology, soil 
type, vegetation, and topography (Grayson & Blöschl, 2000). The nature of these dependencies, if 
well understood, can facilitate both: (a) the development of prior estimates for the parameter fields 
(Koren et al., 2000) and (b) the implementation of regularization relationships that constrain the 
dimensionality of the parameter estimation problem (Pokhrel et al., 2008). The other way, to 
tackle high dimensionality, is to develop enhanced strategies for extracting information about the 
parameter fields from the historical time series. For example, Yilmaz et al. (2008) demonstrated 
that a set of signature measures, properly selected from the historical time series, can be used to 
constrain the model performance in a hydrologically meaningful way.  
 
Spatial regularization  
Problems associated with high dimensionality of the parameter search space during calibration can 
be treated by inclusion of additional (prior) information about the parameters, through a process 
known as regularization. In its broadest sense, regularization involves the use of additional 
information to help stabilize ill posed problems (Doherty & Skahill, 2005). The use of scalar 
multipliers to reduce dimensionality when dealing with spatially distributed parameter fields is a 
common form of regularization, that both reduces the dimension of the optimization problem, 
while simultaneously improving its conditioning. In Pokhrel et al. (2008), we used information 
embedded in the prior parameter estimates of 11 spatially distributed parameters of the Sacramento 
Soil Moisture Accounting Model (SACSMA; Burnash et al., 1973), to introduce regularization 
constraints on parameter variability and facilitate a stable solution to the calibration problem. The 
prior estimates were derived from information about antecedent soil moisture, soil sand-silt-clay 
fractions, depth of soil horizon, vegetation type and land use, using the procedure reported by 
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Koren et al. (2000). To infer the form of the regularization constraints, we assumed that the Koren 
a priori parameter estimates (KAP) are representative of the actual spatial relationships among the 
parameters, and therefore contain information about the dominant patterns of spatial correlation to 
be preserved during calibration. We used a regression approach to derive empirical equations that 
relate each KAP estimate to one or more observable (or inferable) watershed characteristics, 
resulting in a set of nonlinear regularization equations that were valid over the spatial domain (one 
for each model parameter field). This resulted in substantial reduction in the dimension and a 
stable solution to the calibration problem. By optimizing on the coefficients of the regularization 
equations, a better simulation of the input-state-output behaviour of the watershed was achieved.  
 
Response signatures 
Recently, efforts have been made at formulating “diagnostic” criteria that aid in understanding the 
causes of poor model performance (Gupta et al., 2008). For example, Yilmaz et al. (2008) used 
properties of the flow duration curve (FDC) to develop a set of “signature measures” that target 
three specific behavioural responses of a watershed system: the overall water balance, and 
redistribution of water to slow and fast components. The FDC was divided into: (1) the high flow 
segment which characterizes watershed response to large precipitation events, (2) the mid-flow 
segment which characterizes watershed response to moderate size precipitation events as well as 
the medium-term baseflow response of the watershed, and (3) the low flow segment which character-
izes the long-term sustainability of flow and the influence of riparian evapotranspiration during 
extended dry periods. The response signatures developed were: (a) BRR which quantifies the % 
volume bias in the overall runoff ratio, (b) BFHV which quantifies % volume bias in the highest 
5% of the flows, (c) BFMS which quantifies the % difference in the mid-segment slope of the 
FDC, (d) BFLV which quantifies the % volume bias in the lowest 30% of the flows, and (e) BFMM 
which quantifies the % difference in the median flow. For details, see Yilmaz et al. (2008). 
 In Pokhrel et al. (2009) we used spatial regularization (Pokhrel et al., 2008) and response 
signatures to estimate a set of hydrologically consistent parameters for a distributed version of the 
SACSMA model. In this paper we extend the methodology using an approach that is functionally 
similar to Tikhonov regularization (Tikhonov & Arsenin, 1977). The approach is demonstrated 
using data for the Blue River Basin in Oklahoma, USA. 
 
 
WATERSHEDS, THE MODEL AND DATA 
The Blue River basin in southern Oklahoma is a narrow and elongated gently sloping river valley, 
with an area of approximately 476 square miles (1232 km2). The average annual rainfall in the 
basin is 1036 mm and the average annual flow at the outlet is 302 mm (Smith et al., 2004). The 
Distributed Hydrologic Model University of Arizona (DHMUA) (Pokhrel et al., 2008) consists of 
a vertical water balance component based on the SACSMA applied to each cell of the HRAP 
(Hydrologic Rainfall Analysis Project) grid covering the study area, and a horizontal channel 
routing component based on the Muskingum method (Gill, 1978). Inputs to the model are spatially 
distributed precipitation derived from Next Generation Weather Radar coverage (NEXRAD; 4 × 4 
km2, 1-hour) and potential evaporation estimates based on annual free water surface evaporation 
maps and mean monthly station data (Smith et al., 2004). Six years of data were used for the study 
(1 October 1999 to 30 September 2005) including a model spin-up period (WY 99-00), a 
calibration period (WY 00-02), and an evaluation period (WY 02-05). 
 
 
METHODS USED IN THE STUDY 
Regularization method  
To reduce the dimension of the calibration problem, this study employs a simple spatial 
regularization method using scalar multipliers (Bandaragoda et al., 2004) to adjust the magnitudes 
of KAP estimates. The assumption here is that KAP estimates contain information representative 
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of the dominant patterns of spatial correlation that should be preserved during calibration. 
However, their magnitudes need to be adjusted to match the output response of the watershed. Of 
the 16 SACSMA parameters, we adjust the magnitudes of 11 KAP fields and treat five as uniform 
and fixed (not adjusted). This reduces the dimension of the calibration problem from 860 (78 grid 
cell × 11 parameters in each cell + 2 lumped routing parameter) to 13 (11 multipliers for each KAP 
field + 2 routing parameters).  
 
Conditioning using signature measures 
We use the five signature measures defined earlier to help condition the optimization problem and 
to guide the calibration towards a hydrologically consistent set of parameters. For each signature 
measure, a pre-specified “acceptance” threshold was selected and deviations beyond this threshold 
were penalized. Optimization was implemented by solving the following minimization problem, 
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where, Xi  is the KAP estimate φi is the scalar multiplier to the ith parameter field (i = 1 … NP are 
the parameters to be optimized), Tn is the threshold value specified for the nth signature measure, 
and BBn is the computed value (n = 1 ... NS are the multiple signature measures to be satisfied). In 
this formulation, Fk is the criteria measuring model performance against the data (k = 1 … NC are 
the multiple criteria to be optimized; in our case, k = 2 and the criteria are mean squared error 
[MSE] and mean squared error of the log flows [MSEL]), and γn measures deviations of the 
signature measure values from the acceptable threshold values. Therefore, α represents the overall 
penalty applied whenever deviations to satisfying one or more of the regularization constraint 
occur.  
 
Calibration 
For optimization we use the Multiple Objective Shuffled Complex Evolution Metropolis 
(MOSCEM) stochastic sampling scheme (Vrugt et al., 2003) with 20 complexes terminated after 
65 loops. Each optimization run involved a population size of 540 and approximately 36 000 
function evaluations, requiring approximately 24 hours on a Macintosh 2.66GHz, 4GB RAM 
machine. As a benchmark, we calibrated the model without using the signature measures (case  
B-MC), to match the observed flows at the basin outlet. A compromise solution was selected from 
the final set of non-dominated solutions (Pareto frontier) by further constraining the solutions to 
the one having minimum value of the modified correlation coefficient (ModR; see Smith et al., 
2004). For calibration using the signature measures (case SI-MC), the thresholds (Tn) were initially 
specified as the minimum values obtained by the final set of non-dominated solutions for the  
B-MC case. The thresholds were then subjectively adjusted (reduced if possible, or increased if the 
threshold was so tight that it became difficult to find feasible solutions) and a re-calibration 
performed. Final values selected for the thresholds were TBRR = 10%; TBFMS = 20%; TBFHV = 10%; 
TBFLV = 25% and TBFMM = 10%.  
 
 
RESULTS 
Pareto Frontier obtained after the calibration 
Figure 1 shows the objective function space obtained by the B-MC and SI-MC calibrations, 
respectively. The black dots indicate the non-dominated solutions (Pareto frontier) and the grey 
dots indicate the dominated solutions. The B-MC calibration (Fig 1(a)) clearly shows at least two 
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(a) (b) 

Fig. 1 Objective function space after B-MC (1a.) and SI-MC (1b.) calibrations. 
 
 
regions of attraction, indicated by the gap in the grey dots around 1 < MSEL < 2. Note that the 
scale of MSEL in the SI-MC plot is one order of magnitude smaller than in the B-MC plot. This 
occurs because the SI-MC calibration problem is better conditioned by the use of signature 
measure, resulting in a “smoother” response surface and smaller feasible region.  
 
Signature measures 
Figure 2 shows box and whisker plots of the distributions of the signature measures at the Pareto 
frontier (corresponding to black dots in Fig. 1), and the modified correlation coefficient (converted 
to %), indicating the lower, median and upper quartiles. The whiskers extend up to 1.5 times the  
 

 

(a) (b)

(d) (c) 

Fig. 2 Signature measures after B-MC (a) and (c), and SI-MC (b) and (d) calibrations. 
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inter-quartile range and the extreme values are represented by a “+” sign. In the B-MC calibration 
we observe a large % bias in the BFLV and BFMM signature measures during both calibration and 
evaluation. During calibration the median BFLV is close to 100% and the lower quartile extends 
beyond the limits of the plot. During evaluation the median BFLV improves, but the lower quartile 
for both BFLV and BFMM still extend beyond the plot limits. In the SI-MC calibrations this 
problem is corrected, with very small spread in the values of the biases and all signature measures 
having deviations less than 25% during calibration and 50% during evaluation. In both cases 
ModR is similar except for some outlier values. 
 
Flow duration curves  
Figure 3 shows flow duration curves for the compromise solutions selected from the B-MC and 
SI-MC non-dominated solutions. The SI-MC calibration result improves the simulation of mid 
level flows during both calibration and evaluation. However, we also observe a slight deterioration 
in simulation of low flows during the evaluation period.  
 
 

 
Fig. 3 Simulated and observed flow duration curves comparing B-MC and SI-MC. 

 
 
CONCLUSIONS 
This study has investigated a calibration approach using simple spatial regularization (via scalar 
multipliers) to reduce the dimension of the calibration problem, and five signature measures to 
improve conditioning while guiding the search towards more hydrologically-consistent values for 
the parameters. The approach is demonstrated for the Blue River Basin in Oklahoma. When 
signature measures were not used, the search space contained at least two regions of attractions 
(local minima) causing some solutions to converge to high values of MSEL with poor simulation 
of low flows. This resulted in the river going almost dry, as can be inferred by the very high values 
of BFLV. This problem was corrected by the use of signature measure constraints, reducing BFLV 
to be less than 25%, resulting in a hydrologically more consistent result. However, use of the 
modified correlation coefficient to select a compromise solution resulted in only small 
improvements by the SI-MC approach over B-MC. In summary, use of signature measures as 
regularization constraints improves the conditioning of the optimization problem, but further 
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testing will be needed to establish whether the approach consistently provides hydrologically 
consistent parameter estimates. 
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