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Abstract A rainfall–runoff (RR) model considering the spatial variation of rainfall, soil infiltration 
capability and soil storage capacity over a catchment and based on probability distribution functions, is used 
for rainfall–runoff modelling. The model combines infiltration excess (Horton) and saturation excess 
(Dunne) mechanisms. Moreover, it is applied to a data sparse catchment. Model parameters of the studied 
data sparse catchment are inferred from its parent gauged basin. In addition, a semi-distributed RR model 
called TOPMODEL is also employed in the parent gauged basin for comparison. Results show that the RR 
model can, to a certain extent, be applied to data sparse regions based upon hydrological similarity between 
the study catchment and its parent basin. 
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INTRODUCTION  
Precipitation is a highly variable atmospheric variable and this makes it difficult to provide its 
accurate spatial and quantitative description. At present, raingauges are most widely used in 
rainfall estimation, but they cannot describe the spatial variability of rainfall (Niemczynowicz, 
1986). Liang et al. (1996) considered that two approaches can be taken to model the spatial 
variability of precipitation. One is the pixel-based approach, which discretizes the precipitation 
over a spatial domain. Another option is the statistical dynamic approach to representing the 
spatial variability in precipitation. For the former approach, the determination of parameters is 
complicated and its data requirement is much stricter, while the statistical dynamic approach 
sometimes may produce better results. Consequently, the latter has been identified as a valuable 
hydrological descriptor and studied for many years. Warrilow et al. (1986) combined a negative 
exponential precipitation distribution with a constant maximum surface infiltration rate to estimate 
runoff from a catchment. In this paper, the precipitation probability density function (pdf) they 
presented is adopted. In addition, the spatial distribution of infiltration capacity and soil moisture 
storage capacity over a catchment are also non-uniform. Sometimes, they can also be characterized 
by probability distribution functions. The Xinanjiang model (Zhao, 1992), which has been 
successfully and widely applied in humid and semi-humid regions in China, expresses the spatial 
distribution of soil moisture in the form of a probability distribution function, similar to that 
advocated by Wood et al. (1992) and Todini (1996). In this paper, a simple RR model (Liang et al., 
2006) is employed. Based on the runoff-yield model, the quasi-analytical solution for surface 
runoff is deduced by the joint distribution of rainfall and soil infiltration capacity based on the 
Horton mechanism, while the underground runoff can be obtained according to Dunne mechanism. 
 However, model efficiency mainly depends on the hydro-meteorological data rather than the 
model itself. In many regions, the local data are often sparse or non-existent. For example, data 
collection is difficult in many montane areas, but these regions are important runoff source areas – 
generating floods, sustaining base flows and regulating the hydrological regime that maintains 
freshwater ecosystems (Bales et al., 2006). Due to limited hydrological monitoring of these 
regions, a highly sophisticated hydrological modelling approach cannot be implemented (Kim & 
Kaluarachchi, 2008). In order to predict streamflow for data-limited catchments, model parameters 
could be extrapolated from gauged basins. In this paper, the RR model has a simple structure and 
few parameters. Moreover, its parameters are easy to determine, which means the model could be 
applied to data sparse basins. Several simple rainfall relationships are used as converters, and 
meanwhile the model parameters are determined based on hydrological similarity between the data 
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sparse catchment and its parent gauged basin. Consequently, the RR model is then tested in a data 
sparse catchment. 
 
THE RAINFALL–RUNOFF MODEL 
The structure of this RR model (Liang et al., 2006) includes two main components. One is the 
surface runoff component: based on the Horton mechanism, the quasi-analytical expression of 
surface runoff can be deduced; the other is the underground runoff component: runoff generated 
below ground surface can be calculated according to the Dunne mechanism. Therefore, the total 
runoff is composed of Horton runoff and Dunne runoff. The model is presented in detail by Liang 
et al. (2006). However, a brief description is given here for completeness. 
 
Surface runoff 
In order to describe the spatial variability of rainfall within a basin, Warrilow et al. (1986) 
supposed that it could be reflected with a pdf which can be expressed as: 

)/exp(/)( mimi PPPPf μμ −⋅=  with 0 1μ≤ ≤                                   (1) 

where Pi is rainfall intensity at any point within a catchment, Pm the catchment average rainfall 
intensity, and μ is a fraction representing the ratio of rainfall coverage area. 
 Here, the spatial variation of soil infiltration capacity is described by a parabola type 
cumulative distribution function (cdf): 

( )nmmii FFFF /11)( −−=  with ( )1mm mF n= + F                                 (2) 

where Fi is the surface infiltration rate, Fm the mean areal infiltration rate over a catchment, Fmm 
represents the maximum infiltration rate, and n is the exponent parameter measuring the non-
uniformity of this distribution. 
 Surface runoff rate at point i is Pi – Fi if Pi ≥ Fi, or zero if not. For the former case, based on 
the randomness of surface runoff rate in space and the hypothesis that Fi and Pi are considered as 
two independent random variables for the sake of simplicity, the probability distribution of surface 
runoff rate, RSi, can be obtained: 
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where Pmin is the minimum rainfall intensity while Pmax the maximum rainfall intensity, and kr can 
be calculated by a numerical integral approach. Moreover, the catchment average surface runoff, 
RS, which is the catchment average surface runoff rate multiplied by time step, Δt, can be 
expressed as: 
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Consequently, the catchment average surface infiltration, F, is RStPF m −= Δ . 
 
Underground runoff 
Infiltration is used for soil evaporation and to supplement soil moisture. The spatial distribution of 
soil moisture capacity is expressed as a probability distribution function (Zhao, 1992). It is 
demonstrated that the following relation holds reasonably well between the area at saturation, α, 
and the local proportion of maximum soil moisture content W′/Wmm, where W′ is the point soil 
moisture at saturation and Wmm is the maximum possible soil moisture at any point over a basin. 
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( )bmmWW /11 '−−=α  with mmm WbW )1( +=                                       (6) 

where Wm  is the average soil moisture storage capacity, and b is an exponent parameter measuring 
the non-uniformity of this distribution. In addition, A is supposed as the point soil moisture at 
saturation corresponding with the average soil moisture content, W. Thus, A is defined as: 

( ) ( )1/ 1[1 1 / ]b
mm mA W W W += − −                                                  (7) 

 The underground runoff, RG, would be equal to zero if infiltration is less than the actual soil 
evaporation, E. And E is assumed to coincide with the potential evaporation which is equal to the 
reduction coefficient of evaporation, k, multiplied by the pan evaporation, Ew. Otherwise, there 
would be two possibilities: 

(a) , if ( )[ ] 1/1 ++−−++−−= b
mmmm WAEFWWWEFRG mmWEFA <−+ ; and 

(b) ( WWEFRG m )−−−= , if not. 

These equations, which represent the average underground runoff produced in the catchment, must 
be associated with an equation of state in order to update the mean water content in the soil. This 
equation takes the form: 

tttttt RGEFWW −−+=+Δ                                                       (8) 

where the quantities represent averages over the catchment and their variation indicates changes 
between t and t + Δt, while Wt and Wt + Δt are their values at time t and time t + Δt, respectively. 
 
 
MODEL CALIBRATION AND VALIDATION 
Dongwan catchment 
Dongwan catchment, a sub-basin at the middle reach of the Yellow River in China, was studied. It 
is a humid and semi-humid area and it extends over about 2567.4 km2. Its terrain is high in the 
west and low in the east. The mean annual precipitation is 744 mm. Rainstorms usually occur 
during July to October. Floods are mainly formed by rainstorms with high peak flow and short 
duration. There are 11 raingauges in the catchment (shown in Fig. 1). The figure also shows the 
geographical position and stations of Lushi catchment which is used as the case study in the 
discussion section. 
 
 

Yellow River basin 

 
Fig. 1 Geographical position and stations of study catchments. 
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Model calibration and validation 
In order to determine the mean areal infiltration rate over a catchment, the Horton infiltration 
model (Horton, 1940) is introduced here. The infiltration capacity, fp, and time t relationship may 
be expressed as: 

( ) )exp(0 tffff ccp ⋅−⋅−+= β                                                (9) 

where f0 is the initial maximum infiltration rate, fc is the final constant infiltration rate, and β is an 
exponent that controls the rate of decrease in the infiltration capacity. Based on equation (9), the 

mean areal infiltration capacity between t  and tt Δ+ , , can be calculated. Thus the 

mean areal infiltration rate can be defined as: 
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 Based upon the category of soil and cover complex, the pre-set values of Horton model 
parameters can be determined according to Skaggs & Khaleel (1982). Table 1 gives all the 
parameters used in Dongwan catchment. Seven rainfall–runoff events of this basin are chosen for 
calibration and validation. Here, the time step is one hour. For every event, simulated runoff is 
compared with the corresponding observed result (Table 2) which is calculated by analysing 
component parts of its natural hydrograph. It can be seen that for all events, the absolute values of 
relative error are less than 20%, while the minimum value is 1.9% and the maximum is 17.7%. 
Given that rainfall for the seven rainfall–runoff events ranges from 19.0 to 170.9 mm, these 
rainfall–runoff events can be considered as representative. In addition, TOPMODEL (Beven & 
Kirkby, 1979) was applied to this basin, and its results are shown in Table 2 for comparison. It can 
be seen that the results obtained by the RR model are acceptable when compared with 
TOPMODEL, thus the RR model can be considered to be available for Dongwan catchment. 
 
Table 1 Calibrated model parameter values in Dongwan catchment. 
Parameter μ f0 (mm/h) fc (mm/h) β (h-1) n Wm (mm) b k 
Value 1.0 670 20 84 0.4 130 0.4 0.9 
 
Table 2 Calibration and validation results of the RR model and TOPMODEL in Dongwan catchment 
(hourly hydrological data of No.1-No.5 rainfall–runoff events are used for calibration; hourly hydrological 
data of No.6 and No.7 rainfall–runoff events are used for validation). 
Rainfall–runoff event Rainfall Observed RR model TOPMODEL 
  runoff Predictions Error Predictions Error 
 (mm) (mm) (mm) (%) (mm) (%) 
(1) (2) (3) (4) [(4)–(3)]/(3) (5) [(5)–(3)]/(3) 
1. 27 Jul.–9 Aug. 1996 170.9 105.1 123.7   17.7 117.9   12.2 
2. 11–16 Aug. 1998   76.5   36.5   37.2     1.9   37.5     2.8 
3. 5–8 Jul. 1999   19.0     5.9     5.2 –12.7     5.3 –10.4 
4. 25 Jul.–1 Aug. 2001 103.3   19.9   19.0   –4.1   21.4     7.6 
5. 17–18 Aug. 2005   60.8   13.6   12.7   –7.0   13.8     1.2 
6. 18–20 Aug. 2005   32.2   11.2   11.6     3.5   11.6     3.1 
7. 28 Sept.– 3 Oct. 2005   64.4   38.7   37.1   –4.0   36.3   –6.3 
 
 
METHODOLOGY 
Because there are many data-limited regions in the world, how to generate the flow series of these 
areas has been gaining more and more attention. In general, the following methods are commonly 
applied (Yu & Yang, 2000): (a) utilizing a model including only physically-based parameters that 
can be observed or inferred from measurements; or (b) extrapolating calibration parameters from 
those found at gauged sites close to the ungauged sites. The latter can also be interpreted as: 
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extrapolating model parameters calibrated by data of a gauged catchment to a data-limited 
catchment, thus, the model can be applied to such data sparse regions. Due to restrictions by many 
factors, hydrological models which have only physically-meaningful parameters are difficult to 
apply in actual predictions at present. Moreover, most RR models currently are described by some 
parameters which need to be determined from hydrological data. Consequently, it becomes very 
important to extrapolate the model parameters of data-rich regions to data-limited catchments. 

Relationships between rainfall intensity of the central station and the catchment average/ 
maximum rainfall intensity of parent basins can be extrapolated to data sparse basins. For a 
rainfall–runoff event, first, we establish the relationship, for the parent gauged basin, between 
rainfall intensity of the central station, Pc, and the catchment average rainfall intensity based on the 
linear regression method, the relationship is called Pc ~ Pm hereinafter; second, another 
relationship between rainfall intensity of the same central station and the catchment maximum 
rainfall intensity is also established which is similar to Pc ~ Pm and called Pc ~ Pmax in this paper. 

For the same event, the catchment average rainfall intensity of the data-limited basin at every 
time step can be obtained from the relationship Pc ~ Pm of its parent basin according to Pc of the 
data-limited catchment. In a similar way, the catchment maximum rainfall intensity of the data-
limited catchment can also be obtained from the relationship Pc ~ Pmax. As a consequence, based 
on the extrapolated relationships, the catchment average/maximum rainfall intensity of the data 
sparse catchment can be inferred, thus the RR model can be applied to the data-limited catchment 
after all model parameters are determined. 

 
 

CASE STUDY AND DISCUSSION 
The study catchment 
Lushi catchment, a sub-basin close to Dongwan catchment, is studied as a data sparse basin. Its 
area is about 4716 km2, and its terrain is similar to Dongwan basin. However, there is only one 
raingauge, called Baiyusi, and one discharge station, called Lushi, which is the outlet, within the 
catchment. Details position of this catchment and its stations are given in Fig. 1. 
 
Results and discussion 
Based on the hydrological similarity, Dongwan catchment is chosen as the parent gauged basin of 
Lushi catchment in this section. One can see from Fig. 1 that Baiyusi station and Daqinggou 
station can be viewed as the central stations of their catchments, respectively. In addition, seven 
rainfall–runoff events used in Dongwan catchment are also used for this data sparse basin. The 
evaporation data of Dongwan catchment are directly extrapolated to Lushi catchment. Model 
parameters used in Lushi catchment are the same as those shown in Table 1, except for n = 0.45 on 
account of the difference of catchment area. 
 The simulated results are given in Table 3. The model efficiency of Dongwan catchment is 
better than that of Lushi catchment. This implies that the local data are even more important than 
all other influencing factors in rainfall–runoff modelling. It is also observed that the RR model can 
be used in Lushi catchment for rainfall–runoff modelling. For No.3 rainfall–runoff event, the 
absolute value of the runoff error is greater than 20%. This is probably because the hydrological 
data used in this rainfall–runoff event, which are inferred from Dongwan catchment, are under–
representative of conditions in Lushi catchment. 
 As stated above, the RR model and the methodology presented are available for two study 
catchments. However, two main pre-conditions should be discussed: (a) model applicability, and 
(b) hydrological similarity. In order to verify the applicability of the RR model to the parent 
gauged basin, the pdf and cdf of equation (1) are compared with those of the statistical histogram 
of observed precipitation data for sufficient time steps different rainfall–runoff events. The 
comparison show that the RR model can be applied to Dongwan catchment. For instance, Fig. 2 
gives the results of a certain time step, and this can validate the applicability to some extent. 
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Table 3 Validation of the RR model in Lushi catchment. 
Rainfall–runoff event 
 
(1) 

Rainfall 
(mm) 
(2) 

Predictions 
(mm) 
(3) 

Observations 
(mm) 
(4) 

Error 
(%) 
[(3)–(4)]/(4) 

1. 27 Jul.–9 Aug. 1996 44.0 19.9 24.8 –19.9 
2. 11–16 Aug. 1998 43.5 17.8 19.9 –10.3 
3. 5– 8 Jul. 1999 20.7   5.8   4.8   21.4 
4. 25 Jul.–1 Aug. 2001 31.0   2.9   3.4 –15.1 
5. 17–18 Aug. 2005 21.6   3.1   3.6 –13.1 
6. 18–20 Aug. 2005 20.4   6.8   6.3     8.0 
7. 28 Sep.–3 Oct. 2005 72.4 47.4 49.8   –4.7 
 
 

 
Fig. 2 Comparison of results between 19:00h 4 August 1996 and 20:00h 4 August 1996 of No.1 
rainfall–runoff event: (a) pdf; and (b) cdf. 

 
 
CONCLUSIONS 
This paper introduces a simplified RR model coupling Horton and Dunne mechanisms, which is 
based upon the probability distribution function approach. The approach is tested in a humid and 
semi-humid region which is a sub-catchment of the Yellow River basin, and compared with 
TOPMODEL that does not use probability distribution functions. The methodology which shows 
how to simulate rainfall–runoff response for data sparse catchments, is presented. In the frame of 
this methodology, the RR model can be applied to data sparse regions. Based upon the hydrol-
ogical similarity between the two study basins, the catchment average and maximum rainfall 
intensity of Lushi catchment are inferred from that of Dongwan catchment. And the pre-conditions 
are also discussed. Results obtained from the case study show that the RR model methodology 
presented in this paper to simulate rainfall–runoff response for data sparse basins is reliable. The 
major conclusions from this study are summarized below. 
 For prediction in data sparse regions, the specialty of this study is that several probability 
distribution functions are used for rainfall–runoff modelling, i.e. the RR model, and the model 
parameters of data sparse catchments can be inferred from their parent gauged basins based upon 
the hydrological similarity and the statistical properties of the probability distribution function 
approach. The RR model uses probability distribution functions to describe the spatial distribution 
of the three main factors influencing rainfall–runoff. Its surface runoff and underground runoff are 
based on Horton and Dunne runoff mechanisms, respectively. Therefore, it is a generic RR model 
which can be applied to different regions. One can modify the parameter values of the Horton 
runoff module and/or Dunne runoff module so that the model is suitable for the actual runoff 
generation mechanism of study areas. As a consequence, the RR model can be applied to data 
sparse catchments due to the statistical properties and the commonality of the probability 
distribution function approach. 
 Future work will also verify the methodology of application of this RR model to data sparse 
regions. And different forms of rainfall intensity pdf maybe combined into the RR model in order 
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to represent different spatial distributions of rainfall intensity and improve model efficiency, thus 
the model applicability in data sparse regions would be effectively improved. 
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