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Abstract South Africa has a long history of using hydrological models to solve practical water resources 
management problems. Despite recent international advances in uncertainty analysis, uncertainty has yet to 
be explicitly included as part of standard modelling practice in the country. This paper reports on the initial 
development of a model independent framework for ensemble streamflow predictions in gauged and 
ungauged basins in data-poor regions. The proposed framework is largely based on existing methods and 
data and includes a priori parameter estimation, a Monte Carlo framework and constraining model 
ensembles in ungauged basins through regional signatures of the catchment runoff response. Progress to date 
includes the modification of an existing a priori parameter estimation procedure that includes Monte Carlo 
sampling from probability distribution functions and the generation of model output ensembles. Two 
regional signatures have been developed, one based on the Budyko relationship and the other on the slope of 
the flow duration curve. A test application demonstrated that all the a priori ensembles produced 
behavioural flow duration curves, while only approximately 50% fell within the flow volume constraint. 
While the overall conclusion is that the framework is both theoretically sound as well as practical to 
implement, future work will focus on the development of additional regional catchment signatures and the 
use of the constrained ensembles in other water resources management tools, such as system yield models.  
Key words modelling; South Africa; uncertainty; regionalization; regional signatures; model evaluation; Budyko; 
parameter estimation 
   
 
INTRODUCTION 
Effective and sustainable management of water resources demand reliable quantification of 
freshwater amount, distribution and quality. However, a severe lack of observations regarding 
freshwater resources renders many basins throughout the world, and especially in developing 
countries, as effectively ungauged. Hydrological models have therefore emerged as practical tools 
to provide information on water availability, as well as being used to simulate the impacts of 
present day and future human development or climate change scenarios. It is impossible to 
accurately represent all hydrological processes in a model and the information that is available to 
establish a model for a specific basin (i.e. climate and basin physical property data such as 
topography, soils, vegetation, geology, etc.) is typically less than perfect. It is therefore necessary 
to acknowledge the different sources of uncertainty that exist in the use of imprecise represen-
tations of reality. Major sources of uncertainty in water resources estimation include input data, 
model structural and parameter estimation errors (Ratto et al., 2007). An understanding and 
quantification of these uncertainties are expected to contribute to improved decision making and 
thus improved management practices. Uncertainty assessment of model simulations has risen to 
prominence in the last few years (Pappenberger & Beven, 2006; Refsgaard et al., 2007) and 
uncertainty reduction is the focus of a 10-year initiative on Predictions in Ungauged Basins (PUB) 
(Sivapalan et al., 2003).  
 The most common approach to continuous hydrological predictions in ungauged basins has 
been the extrapolation of information on model parameters from gauged basins in a process 
commonly known as regionalization (Nathan & McMahon, 1990). The basic tenet in regional-
ization is that, if there exists a relationship between model parameters and basin properties which 
holds for a gauged basin, then flow simulations can be achieved in an ungauged basin which has 
similar physical attributes. However, the transition from the identification of local models at 
gauged basins to the establishment of relationships for regional models suitable for ungauged sites 
has some significant shortcomings related to the uncertainties associated with the local models and 
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how these are affected by data errors and their own parameter uncertainties (Wagener et al., 2004; 
Wagener & Wheater, 2006). An alternative approach, called “regional calibration”, simultaneously 
optimizes both the model parameter calibration and the regional relationships (Fernandez et al., 
2000).  
 Yadav et al. (2007) therefore proposed an alternative strategy in which catchment character-
istics streamflow signatures are regionalized, rather than model parameters. This strategy can be 
seen as part of an alternative approach to hydrological modelling that is offered by Gupta et al. 
(2008) and involves the use of a signatures-based, diagnostic process of model evaluation. This 
approach incorporates modelling uncertainty analysis and deviates from traditional practice in that 
it does not just use statistically based objective functions to measure model performance. The 
reasoning is that these traditional approaches ignore hydrological understanding regarding how the 
model represents the functional behaviour of a catchment. The process of model evaluation makes 
use of catchment signature indices of dynamic system behaviour to constrain and condition 
continuous flow simulations at gauged and ungauged sites (Fig. 1). Wagener et al. (2007) and 
Yadav et al. (2007) define a signature as an index or a time series of the response behaviour of a 
catchment at a given time-scale, which is reflective of a catchment’s functional behaviour and can 
be regionalised. Since these constraints arise out of the theoretical basis for hydrological modelling 
it should be possible to test them against observed data (Gupta et al., 2008). Depending on the 
model, a range of constraints could be used and common ones include yield-storage curves, flow 
duration curve gradients, runoff ratio (runoff/precipitation or P/Q), aridity indices (precipitation/ 
evapotranspiration or P/PE) and measures of discharge timing (Shamir et al., 2005). Yadav et al. 
(2007) showed that such signatures can often be regionalized very well since they derive directly 
from observed streamflow, rather than from a noisy calibration process as in the case of model 
parameters. If the regionalization process includes estimates of uncertainty, then these regional 
signatures can be used as constraints on the behaviour of local hydrological models (Fig. 1). 
Another approach to the link between “input-state-output data” and “static basin data” represents 
the regionalization process in which regional signatures of catchment response behaviour are used 
to constrain model outputs. This approach uses direct measures (from observed information) of the  
 
 

 
Fig. 1 The approach used to constrain and evaluate model application.  
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catchment behaviour to determine whether model outputs are “acceptable” or behavioural and has 
been tested in some United Kingdom catchments by Yadav et al. (2007). The catchment indices 
are regionalized through the use of simple regression relationships with the confidence limits used 
to define the distribution of possible “behaviours” for each index. For any given set of initial 
parameter values (defined either as equally likely values within a range, or as some type of 
distribution function), the model can be run for all possible parameter combinations to generate an 
ensemble of outputs. Predicted values of indices are then calculated from the model outputs and 
compared with the regional values to determine acceptable outputs from the output ensembles 
(Yadav et al., 2007; Gupta et al., 2008). These regional signatures can thus be seen as regional 
priors on the expected catchment streamflow behaviour. Additional information can be included if 
local priors on the model parameters are derived from static basin characteristics such as soil or 
topographic data. Such a framework therefore allows for the use of both local and regional priors 
and for testing their relative value.  
 South Africa has a long history of the use of hydrological models for practical water resources 
problem solving (Hughes, 2004a) and while it has always been recognized that the model outputs 
are uncertain, this uncertainty has never been explicitly quantified. There is therefore an urgent 
requirement to incorporate uncertainty assessment into model applications and this paper proposes 
a framework that incorporates the principles of the diagnostic model evaluation process outlined 
above (Fig. 1) together with some existing modelling practices used within South Africa. While 
the focus is on a recently revised version of the widely used monthly time-step Pitman model 
(Hughes, 2004b) the principles of the framework should be applicable to any hydrological model. 
Some of the details of the framework are still being developed and this paper concentrates on the 
initial research work that has been completed to date. 
 
 
THE PROPOSED UNCERTAINTY FRAMEWORK 
Figure 2 summarises the basic structure of the proposed framework and includes three main 
components: 
– An approach for generating prior parameter distributions, i.e. local priors on the model 

parameters. 
– An approach for sampling from these distributions and generating model output streamflow 

ensembles. 
– An approach for developing regional signature constraints that define behavioural hydrol-

ogical responses against which the model output ensembles are compared, i.e. regional priors 
on the expected catchment response. 
 

The Pitman model 
The recently revised version of the Pitman model (Hughes, 2004b) is a monthly time-step 
conceptual type rainfall–runoff model with parameters representing the main storages and fluxes 
of the natural water balance of catchments. The version that has been used here explicitly 
represents ground and surface water interactions and also includes components that allow artificial 
impacts, such as small farm dams, larger dams, abstractions and return flows, to be included in the 
modelling scheme. The model is relatively parameter intensive, typically requiring values for at 
least 12 parameters to be estimated either through calibration in gauged catchments or some form 
of a priori estimation approach in ungauged catchments.    
 
Prior parameter distributions 
The prior parameter distributions are based on existing parameter value estimation methods 
presented in Kapangaziwiri & Hughes (2008) coupled with the definition of probability 
distribution functions (pdfs) and Monte Carlo sampling. The estimation methods for the main 
runoff generation parameters make use of physical basin property data from the AGIS (2007) 
database that defines surface slope, soil depth and texture characteristics, as well as underlying 
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Fig. 2 Schematic of a model-independent framework for incorporating uncertainty in the generation of 
model outputs. 

 
 
geology for different topographic units within a basin. It has been necessary to translate these 
estimates into probability distribution functions (pdfs) that can be used with random sampling to 
estimate the pdfs of secondary properties (e.g. soil depth, porosity, permeability and infiltration 
rate at the sub-basin scale). The parameter estimation equations use either the raw data or the 
calculated secondary property data and the same sampling procedure is used to estimate their pdfs. 
For example, soil depth information is provided as a range within each soil type/topographic unit 
combination (AGIS, 2007) and it has been assumed that the mean of the range represents the mean 
of a normal distribution, while the lower and upper values of the range represent the 5th and 95th 
percentiles of the cumulative pdf. The shape and type (normal, log-normal, etc.) of the secondary 
property or parameter pdfs are therefore partly determined by the spatial distribution of the raw 
data. If large parts of the sub-basin have similar soil depth ranges, while a small part has much 
deeper soils, it is possible for a secondary property or a parameter to be log-normally distributed.  
 The approach that has been adopted is believed to account for those uncertainties associated 
with the raw physical property data, those associated with the appropriateness of the parameter 
estimation equations, as well as those associated with up-scaling the raw data (based on topo-
graphic units within the sub-basin) to the scale of the sub-basin. While Kapangaziwiri & Hughes 
(2008) focused on the main surface runoff generation parameters (related to soil depth and texture, 
slope and other topographic properties), further work is currently in progress to define similar 
estimation equations for the interception, evapotranspiration and groundwater parameters of the 
model. Until these estimation equations have been finalised their pdfs are simply estimated based 
on likely parameter value ranges derived from previous experience of running the model. All the 
main model parameters can therefore be included in the uncertainty analysis, despite the fact that 
more realistic prior constraints need to be developed for some of the parameters. 
 
Model output ensemble generation 
A Monte Carlo sampling procedure (using the parameter pdfs as discussed above) is currently used 
to generate 5000 model output time series (ensembles) from which any signatures can be calculated 
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and compared with the regional constraints discussed below. Future research will concentrate on 
more computationally efficient approaches which include some form of optimisation that ensures 
that the ensemble members are behavioural given the set of regional constraints. 
 
Development of regional constraints 
This is the part of the framework which requires the most development, and the assumption is that 
the regional constraints should be based on existing knowledge that can be used to characterise 
hydrological response within the South African region. It is prudent to note here that for the 
monthly Pitman model a number of functional catchment characteristics can be investigated. For 
instance, the water balance as a constraint on how basin precipitation is partitioned into actual 
evaporation and runoff, or the flow regime through the flow duration curve (FDC). At this stage of 
the framework development, two constraint relationships have been considered, the first based on 
the Budyko (1974) curve concept and the second on the slope of the monthly flow duration curve 
(FDC).  
 The first step in developing regional P/PE versus Q/P relationships (based on Budyko, 1974) 
was to use the mean annual runoff (Q) from the simulated 70 year (1920–1990) runoff time series 
and the estimated mean annual rainfall (P) and potential evaporation (PE) for all 1946 catchment 
units (known in South Africa as “quaternary” catchments and the scale at which local water 
resources management is undertaken) used in the WR90 database (Midgley et al., 1994) covering 
the whole of South Africa, Swaziland and Lesotho. The runoff data used were the incremental 
flows, generated only within each quaternary catchment. Plotting all these data suggested a series 
of log–log relationships that converge at low values of both P/PE and Q/P. An iterative process 
was followed to define four regional relationships. The relationship for Region 1 was first 
established by identifying a regression equation that had a high R2 value and for which the 
residuals were approximately equally divided between negative and positive values. Once the 
points to be included in Region 1 were finalised, the same process was followed to identify the 
Region 2 points, and so on. All of the points and the resulting regression relationships are shown 
in Fig. 3, while Table 1 lists the equations and R2 values. Figure 4 indicates that the regions are 
generally spatially contiguous, although there are some areas that are not clearly defined as a 
single region. This may be due to localised variations in runoff response, as well as artefacts 
related to errors in the data used. 
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Fig. 3 Regional Budyko type curves based on log-log relationships (see Table 1 for coefficients of the 
regression equations). 
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Table 1 Regional Budyko type relationships.  
Regions:  
1 2 3 4 5 

Based on simulated data 
No. of Quats. 397 702 317 202 325 
Area (km2) range 59–8647 43–18108 72–10274 72–3913 89–8037 
Slope (A) 2.527 2.293 2.168 2.126 1.770 
Intercept (B) –1.113 –0.687 –0.304 0.194 0.478 
R2 0.927 0.968 0.984 0.990 0.866 
Based on observed flow data 
No. of gauges 40 135 45 23 27 
Area (km2) range 86–1887 81–1668 106–1691 84–873 101–1889 
Slope (A) 2.322 2.154 2.171 2.406 1.351 
Intercept (B) –1.079 –0.741 –0.338 0.475 0.173 
R2 0.932 0.905 0.890 0.917 0.820 
Note: equations are of the form ln(Q/P) = A × ln(P/PE) + B 
 
 
 It would not be strictly good practice to develop the regional constraint relationships using 
simulated data, although it is considered here to be acceptable to use these data to define the 
regions. These are the only data that have a reasonable national coverage and are deemed a good 
starting point for a first order definition of regions before these are refined using other coarser 
data, such as observed or naturalised flows, for the definition of the relationships. Therefore, the 
second step involved the use of the naturalised time series (also given in Midgley et al., 1994) for 
all available streamflow gauges. Gauges were initially rejected if they had less than 10 years of 
observations, if their drainage areas included quaternary catchments that fell into more than a 
single region, or if the amount of missing (and in-filled) data was excessive. Some very small 
gauged sub-basins were also rejected. For each of the regions identified during the first step,  
Table 1 lists the number of gauges included in the analysis, the range of catchment areas, the 
coefficients of the final estimation equations and the R2 value. It is apparent that the final 
equations are very similar to the initial equations (Fig. 3 and top part of Table 1 and based on the 
simulated data) for regions 1 to 3, but that there are quite large differences for regions 4 and 5. The 
derived Budyko curves are regionally consistent, implying some underlying physical basis despite 
being empirically derived. It could be instructive to further examine the physical basis for the 
curves following the approach of Yang et al. (2008). 
 In a region such as South Africa with very diverse flow regime characteristics, the shape of 
the flow duration curve (FDC) can be a very useful indicator of hydrological response character-
istics. The shapes of FDCs are also important in determining potential levels of sustainable 
abstraction, the need for artificial storage and are relevant to determining environmental flow 
requirements (Hughes & Hannart, 2003). FDC shape is therefore highly relevant to water 
resources management. As with the Budyko relationships, the starting point for the analysis was to 
use the simulated flow time series for all 1946 quaternary catchments to try and identify regional 
relationships. For largely perennial river systems the FDC slope values were calculated as the 
difference between the Q10 and Q90 values divided by 80 (i.e. 90–10). For those sub-basins with 
periods of zero flow, the Q90 value was replaced with the first non-zero FDC percentage point 
value and the difference in flows divided by the appropriate % differences.  
 Various readily available predictor variables (or combinations thereof) expected to influence 
FDC shapes were used to try and find suitable estimation equations, either for the whole country 
or for different regions. It was found to be very difficult to find suitable variables and there were 
no obvious regional patterns in the data. While further analyses are still being done to improve the 
development of a constraint relationship, Fig. 5 illustrates an interim solution. The estimation 
equation is based on an index that combines a measure of aridity (P/PE) and a measure of sub-
basin slope (relative relief). The R2 value of the relationship is 0.63. The relationship illustrated in  
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Fig. 4 Regions based on Budyko type relationships between P/PE and Q/P. 
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Fig. 5 Relationships between an index of aridity (P/PE) and sub-basin slope (Relief) and the slope of 
flow duration curves based on simulated WR90 data.  

 
 
Fig. 5 excludes a number of sub-basins in the country that are strongly influenced by dolomitic 
geology and a region in the northeast of South Africa that appears to be anomalous based on the 
simulated flow data. Some of the scatter in the relationship as well as the existence of anomalies 
could be artefacts associated with the use of simulated data. The next phase in the study is to 
repeat the analysis using the available observed data.  
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AN EXAMPLE CASE STUDY 
Hughes et al. (2008) presented an initial attempt to include uncertainty into outputs from the 
Pitman model using a gauged sub-basin (C12D) of the Vaal River. The a priori model parameter 
values were estimated using the approach of Kapangaziwiri & Hughes (2008) but the possible 
ranges of values were determined subjectively without any attempt to sample based on probability 
distribution functions of the physical basin attributes data. One of the conclusions reached by 
Hughes et al. (2008) was that the parameter sets that produced the higher runoff simulations were 
not behavioural when the results were compared with the available observed data.  
 The simulations have been repeated using more formal sampling procedures to generate 5000 
ensembles based on varying the values of the six main runoff generation parameters of the model 
(the same parameters formed part of the earlier study by Hughes et al., 2008). All of the ensembles 
use the same hydro-climate inputs. The outputs from the 5000 model runs have been added to  
Fig. 5 (FDC slope) and Fig. 6 (Budyko type relationships), which also indicate the position of the 
observed data (after naturalisation to account for some irrigation and return flow impacts). Figure 5 
suggests that all of the ensembles are acceptable from the point of view of the shape of the FDC, 
while Fig. 6 suggests that many of the ensembles (approximately 49%) are not acceptable in terms 
of overall volume of runoff. This is consistent with the original study observations that considered 
the simulations based on the upper parameter bounds to be non-behavioural.  
 These results seem to suggest that the local (parameter) priors are more effective in 
constraining the basin flow regimes from model simulations, whereas the regional (signature) 
priors would perform better on the water balance restrictions. However, this might change if the 
FDC would be regional rather than national. 
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Fig. 6 The final regression relationship for region 2 (using the Budyko type relationships based on 
gauged data), 95% confidence limits and the location of all 5000 ensemble results for sub-basin C12D. 

 
 
DISCUSSION AND CONCLUSIONS 
A framework for the application of models in a South African context has been proposed. This 
framework is based on a diagnostic model evaluation process and uses regional indices of 
catchment characteristics to constrain simulated catchment behaviour. Catchment scale signatures 
of the hydro-climate response (Budyko relationships) and the slope of flow duration curves have 
been selected as initial constraints and estimation equations have been developed for most of 
South Africa from existing information. The regional Budyko relationships (Table 1) have been 
developed from observed data and are generally very good (narrow confidence bands) with high 
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R2 values. The FDC curve constraints require further refinement and are currently based on 
simulated data that may include some unknown model artefacts. The highest priority for the 
further development of the framework is to refine the existing constraints and identify additional 
relationships that can be used to further constrain the model output ensembles.  
 The single test example demonstrates the merits of the framework and illustrates that different 
constraints may lead to different ensemble members being accepted. In this case all the 
simulations could be considered behavioural based on the properties of the FDCs, while only 
approximately 50% of the ensembles were within the simulated volume (Q/P) constraint, making it 
a strong regional constraint but rather weak on flow regime. It is possible that future work could 
involve examining the parameter sets that generated acceptable results to provide feedback to the a 
priori parameter estimation approach using physical basin property data. This work could also 
involve an examination of the use of these basin physical data for the derivation of the Budyko 
curves (Yang et al., 2008). 
 During this phase of the framework development only parameter uncertainty has been 
considered. However, there is no reason why additional uncertainties cannot be considered using 
the same framework. For example, a series of different rainfall inputs could be generated (using 
stochastic rainfall models, different approaches to sampling gauge data or the use of different 
rainfall data products such as radar and satellite) and used to extend the number of output 
ensembles. The preliminary conclusion is that the development of the basics of the framework has 
been successful from both theoretical and practical points of view, while it clearly requires further 
refinement and extension. The required software only involved straightforward modifications to 
the existing model code and the time taken to generate the parameter distributions and model 
output ensembles is not restrictive for practical model applications. 
 This paper has not addressed the issue of how the accepted ensembles are used in other 
components of water resources development decision making that may involve additional models 
(system yield models, environmental flow determinations, resource economics models, etc.). The 
fact that such methods are currently based on a single input to represent the time series of the 
natural resource availability suggests that they could require substantial modifications to deal with 
the hydrological model ensembles. These modifications may prove to be more of a challenge than 
the development of the framework discussed in this paper. However, the long-term benefits of 
making decisions with an improved understanding of the uncertainties of predictions should more 
than compensate for the efforts required to achieve these modifications. 
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