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Abstract Construction of the water table map is a key step in the assessment of water resources. However, 
the scarcity of groundwater monitoring data in some basins remains a problem for determination of a 
reliable variogram model, which is the starting point for kriging interpolation. Researchers have used the 
secondary variable, the sampling number of which is usually much greater than that of the primary variable, 
in assisting the spatial interpolation of the primary variable, e.g. by the regression kriging and co-kriging 
methods. These methods still require a variogram model to characterize the spatial structure of the primary 
variable. In this study, the authors proposed an approach that derives the variogram model of the 
groundwater level based on the elevation of the land surface data sets. The measurements of land surface 
elevation are widely available to researchers, and the density of the data locations is much larger than that of 
groundwater monitoring records. The land surface elevation was assumed to have a linear relationship with 
the groundwater level. A relationship between the variogram model for the groundwater level and the 
variogram model for the land surface elevation were established; the variogram model for the former can be 
directly inferred from the variogram model of the latter. In the derivation of the groundwater level 
variogram, the precipitation data can also be taken into account. This approach was implemented for the 
Nanjing watershed, China. A variogram model of the groundwater level was obtained from the DEM data 
set of 1000 m × 1000 m grid spacing. 
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INTRODUCTION  
Kriging 
Kriging is the most important method in geostatistics and is applied widely in many natural 
science fields. Kriging was originally developed in geostatistics (also known as spatial statistics) 
by the South African mining engineer called Krige. The mathematics was further developed by 
Matheron (1963). A classic geostatistics textbook is edited by Cressie (1993). More recent 
references are given in Martin et al. (2004, 2005). Searching for “kriging” via Google.com on 6 
February 2009 gave 296 000 hits, illustrating the popularity of this mathematical method. 

The core of kriging is the determination of the variogram. According to the general principle 
of kriging, the steps are: compute the experimental discrete variogram in different points, then fit 
the discrete experiment points with a mathematical model which is designed as the model 
variogram. However, it cannot be applied to all conditions. For example, when the data is 
distributed very sparsely while each point is independent of any other, we cannot use the curve 
fitting process to obtain the model variogram. In the first condition, supposing the data are 
correlated to each other in a limited range, generally processing is terminated because the data 
quantity is much less and the spatial distribution is sparse and discrete. Other methods are 
developed to solve this problem, and in this paper a new approach based on regression is proposed. 
For the last condition, the distribution can be considered as a stochastic process, where all the data 
are random and independent. Therefore, the data do not satisfy the basic assumption of kriging – 
that the different values of points within a special lag are more or less correlated, and as the lag 
increases, the correlation reduces. Because of the complete randomness, the deterministic 
prediction of the variable is unsolvable and impossible.  
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Objective 
For the estimation of groundwater resources, especially storage, interpolation is key to calculating 
the quantity of resources. In this paper, a practical case study is presented to estimate the uncon-
fined groundwater storage resources with kriging in the poorly gauged Nanjing basin in China. 
 The goal of this paper is to introduce kriging generally for Predictions in Ungauged Basins 
(PUB); the basics of kriging, and the principle of regression kriging are reviewed. Furthermore, a 
new kriging method based on regression, named Direct Regression Kriging (DRK), is proposed. 
The rest of this article is the application of DRK in PUB, that is estimation of groundwater 
resources with kriging, and gives the analysis of different kriging results.  
 

 
METHODOLOGY 
Regression-Kriging (RK) – a hybrid interpolation method 
An alternative to kriging is the regression approach, which makes predictions by modelling the 
relationship between the target and auxiliary environmental variables at sample locations, and 
applying it to unvisited locations using the known value of the auxiliary variables at those 
locations (Odeh et al., 1995; Hengl et al., 2004, 2007). 

Common auxiliary predictors in geosciences are land surface parameters, remote sensing 
images, and geological, soil and land-use maps. A common regression approach is linear multiple 
regression, where the prediction is again a weighted average: 
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where 0( )kq u  are the values of the auxiliary variables at the target location, kβ are the estimated 
regression coefficients and p is the number of predictors or auxiliary variables. 

Regression Kriging (RK) combines these two approaches: regression is used to fit the 
explanatory variation and Simple Kriging (SK) with expectation 0 is used to fit the residuals, i.e. 
unexplained variation: 
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where 0( )m u  is the fitted drift, 0( )uδ  is the interpolated residual, kβ  are estimated drift model 
coefficients ( 0β  is the estimated drift), iλ  are kriging weights determined by the spatial 
dependence structure of  the residual and where ( )iuδ  is the residual at location ui. The regression 
coefficients kβ  are estimated from the sample by some fitting method, e.g. ordinary least squares. 
 RK has the advantage that it explicitly separates trend estimation from residual interpolation, 
allowing the use of arbitrarily complex forms of regression, rather than the simple linear 
techniques that can be used with KED (Kriging with External Drift). In addition, it allows the 
separate interpretation of the two interpolated components. In the paper, this regression-kriging is 
named indirect regression kriging (IRK) to distinguish the following proposed kriging. 
 
Direct regression kriging (DRK)—from regression to kriging 
One unique advantage of kriging is that kriging variance is readily available during the 
computational process, and it offers the confidence level of the interpolation (Zimmerman et al., 
1999). However, when the rational variogram cannot be derived, the advantage is invalid in 
practice. In terms of the experimental variogram, the accuracy of it is due to the quality and 
quantity of data. When the data is sparse in the ungauged area, a rational variogram is difficult to 
obtain. Therefore, the core of using kriging in PUB is how to obtain a rational variogram. 
 The structured variable exists and is known in the special time–space domain. The true 
value of structured variable can be obtained by de-noising and inversion methods. In practice, 
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we always supposed that the geo-variant conform to the stationarity condition, ( , ) 0cZ f x y= = , 
and then the geo-variants are equal to the spatial variation. So if we can determine the spatial 
variation precisely, the unbiased and optimal estimation can be obtained with kriging. The 
accuracy of the variogram reflects the density and accuracy of the actual measured data. 
Ignoring the data accuracy, the density of the data is the key factor whether the variogram is 
credible or not. 
 Variograms are categorized as the experimental variogram and the theory variogram. The 
experimental variogram is the value calculated from the sample, and this variogram is discrete and 
tendency. However, the theory variogram is the successive analysis expression to fit the sample 
scatters. The common theoretical models are a spherical model, Gaussian model and exponential 
model. Under the stationarity condition, the larger the data quantity, obviously the better the 
tendency is shown, and conversely the experimental variogram scatters distribute dispersed and 
irregularity, which directly cause the accuracy and reliability of the variogram. So when the 
scatters cannot embody the tendency, the variogram is incredible and the kriging based on this 
variogram is unreliable.  
 For the interpolation of sparse data, it is impossible to obtain more accurate values at ungauged 
locations using only observed data. However, plenty of research results show that the geoscience 
elements present good relationships. Using the regression method the unknown variant can be 
estimated from some related variants. But when the unknown element has strong spatial correlation, 
the regression method cannot reflect the spatial correlation. In the kriging method, making full  
use of the spatial correlation is the starting point, and the element which embodies the correlation 
is the variogram. Considering the strong relation of the variants, the authors derived equations  
to obtain the variogram of the sparse data by means of the correlated variables. Because the 
correlated ones are rich and obtainable, the ungauged variable can be estimated indirectly and 
reasonably. 
 Suppose that there are two variables Z and X, the variable Z are underestimated and the 
amount of data Z is n. The variable X is a correlated variable of Z, and the amount of data X is m. 
Comparing m and n, m is much larger than n. So there are n pairs of (Z, X), and m–n individual 
data X. Because of the scarcity and lower spatial uniformity of Z, it is unable to depict the spatial 
variability of Z. However, the data X are distributed all over, and can easily be obtained to 
construct the variogram exactly. 
 We calculated the variograms of Z and X separately, and plotted scarcity points. If the trends 
of two series are similar and the correlation coefficient of the two variants are large enough, we 
can derive the variogram of Z from that of X as follows: 
 By means of the mapping relationship of Z and X, the equation of variance function can be 
derived by the known variable: 

( ) ( ) ( ( ))Z f X C Z f C X= ⇒ =                                     (3) 

where C()is the variance function. This function is substituted by variogram and covariance. In 
practice, the theory variogram of Z can be obtained from equation (3).  

If Z and X conform to a linear relation: Z aX b= + , then:  
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And if Z and X, Y accord with multivariate linear correlation, Z aX bY c= + + , where Y is another 
correlated variable, then: 
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From the definition of covariance, the equation can be written as: [ ]( ) ( ( ) )( ( ) )C h E Z u h m Z u m= + − − . 
When the regional variable conforms to second order stationarity condition, the expectation exists 
and is equal to a constant: [ ( )]E Z x m=                (constant) x∀ . 
 In the study area, the spatial covariances of regional variable exist and are stationary: 

[ ] 2( ) ( ( ) ( )C h E Z u h Z u m= + −          ,x h∀ ∀      when 0h = , then (0) [ ( )]C Var Z u=                 x∀  
The stationarity of covariance means that variance and variogram are stationary too. The 

followed relation is established: 
( ) (0) ( )C h C hγ= −                                                                                                                  (6) 

In addition, the following definitions are given: 
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The binary correlation can be converted to: 
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Based on the known data, the experimental values of covariance can be calculated, and the theory 
covariance fitted and substituted into equation (8) to obtain the variogram of the object variable. 
 For the multivariable issue, the variogram of the estimated variable is combined with several 
correlated variables in a complex manner.  

 
The method (DRK) comprises several main steps. 
(a) Selection of correlated variable. The number of correlated variables and the significance of the 

variables should be determined in this step. Using the F-test and the correlation coefficient, 
we judge whether the auxiliary variables and the regionalized object variable are strongly 
correlated.  

(b) Observation of the variograms. Draw the variograms of the different variables separately, and 
compare the variogram trend to construct a fitted variogram. The DRK is applicable to those 
cases where the less sparse points cannot present the trend properly. 

(c) Comparison with the spatial correlation. Plot the standardized experiment variograms in one 
drawing and observe whether the trends of different scatters are similar with each other. If the 
standardized variograms show obvious differences, this kriging is unsuitable. 

(d) Derivation the variogram by regression. Based on the large amount of data, the variogram, 
variance and other information of the auxiliary variable should be obtained first, and then in 
terms of equation, the unrecognized variogram of sparse data is obtained. 

(e) Interpolation and extrapolation of the unknown variable with kriging. 
 
 

APPLICATION OF REGRESSION KRIGING 
To demonstrate the usefulness of direct regression kriging (DRK) method and the difference 
between DRK and indirect regression kriging (IRK), we applied it in a practical case. In the case,  
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Fig. 1 Study area and the position of observed wells (+ indicates observed well). 
 
 

we will use selected data points from a digital elevation model (DEM) for Nanjing city to estimate 
an elevation surface, and then take the raingauge data into account to obtain the water table. 
 Shallow groundwater plays an important role in river valleys and deltas around the world. It is 
a source of drinking water, supplements soil moisture necessary for agricultural production during 
the dry season and is the life blood of terrestrial and wetland ecosystems. In hilly terrain with 
permeable soils and in most humid climate zones, groundwater constitutes an important part of 
runoff, while groundwater depth is a key indicator of the antecedent moisture condition of a 
catchment. Thus, knowledge about the spatio–temporal variation of groundwater elevation and 
groundwater depth is important for many hydrological applications. In fact, there are limited 
gauges in the hilly terrain and from this sparse data it is difficult to obtain the correct spatial 
information. In kriging, sparse data cannot be used to form a suitable variogram. In this section, a 
case study about regression kriging is described.  
 
Study area 
The study region is complex, with inland highlands running northeast to southwest and wide and 
flat plains along the Yangzi and Chu rivers and Shijiu Lake. The area of this city is 6597 km2, and 
there are 46 wells within the administrative boundary (Fig. 1). The average well density is larger 
than 140 km2 per well. Nanjing city is subdivided by five catchments, which are Yangzi River 
basin, Chu River basin, Qinhuai River, Yiyang River basin and Tai Lake basin. According to the 
aquifer characteristics, the underground water can be divided into pore water, fissure water and 
karst water. Because the unconfined water level has a good linear relationship with elevation, and 
the water table is similar to the land surface, DEM derived elevation is used as a correlative 
variable first. Then the precipitation is taken into account to obtain the water level. Considering 
the bottom of the aquifer at –30 m, –20 m, –10 m, the groundwater resource can be calculated by 
the aquifer volume timing specific yield (Sy). The purpose of this study is to compare the different 
kriging results, and Sy is steady in specific aquifer, therefore, the aquifer volume is substituted for 
the groundwater resource in this paper. 
 
Elevation, precipitation and water level data 
Elevation data is obtained from the DEM data set of 1000 m × 1000 m grid spacing. The water 
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level data and precipitation data employed are the average observed data in 2001. There are 36 
raingauges and 46 observed wells.   
 
Steps of DRK 
First, we examine the spatial correlation structure of the data from the 46 wells. A variogram was 
constructed (Fig. 2, left). This variogram showed an obvious nugget effect, which means different 
points do not have correlation. This is clearly against the continuity and stationarity of ground-
water. It is true that the sample size of 46 may be too small to develop a reasonably stable 
empirical variogram (Burrough & McDonnell, 1998). Second, the variogram of elevation was 
constructed (Fig. 2, right). The theoretical variogram selected was a spherical distribution with 
goodness of fit.  
 In addition, the standardized variogram scatters are plotted in Fig. 3. The water level points 
are sparsely distributed and surround the DEM points (line), so we believe the two variograms of 
these variables are similar and conform to the conditions of DRK.  
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Fig. 2 The variograms of water level (left) and surface elevation (right). 
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Fig. 3 The integrated variogram scatter (◊ the water level variogram, and ● surface elevation). 



Chengpeng Lu et al. 
 

142 

 The linear relationship between water level and elevation was constructed as equation (9):  
0.5244 1.8551H Z= −                                                                               (9) 

 0.017.89 7.23 (1,45)F F= > =  
The correlation coefficient R = 0.7924, and the F variance test is satisfied. The correlation of 
variances is significant. Using equation (4), ( ) 0.275 ( )H Zh hγ γ= . 
 Based on the experiment variogram, the theoretical variogram of elevation selected was a 
spherical model with the following specification:  

3

3

3 1( ) 0( ) 2 2Z

h hC h ah a a
C h a

γ
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− < ≤⎪= ⎨
⎪ >⎩

 where the sill C is 896.7, the range a is 1000, the main 

anisotropic direction Az is 39.08°, and the ratio of anisotropic T is 1.857. The variogram of water 
level is obtained, and the spatial interpolation can be obtained with kriging. 
 Besides this single relationship, precipitation and terrain were taken into consideration. The 
binary regression equation was constructed: 

0.0176 0.5665 1.6344H P Z= + −                                                             (10) 
 0.0133.29 5.14 (2,43)F F= > =  
The correlation coefficient R = 0.7795 and the F variance test is satisfied. Calculation of the 
relevant variograms and other essential variables is shown as Table 1. To compare the results of 
DRK, we implement the IRK with single and binary scenarios. 
 
Table 1 The parameters of binary linear regression kriging. 
Function / 
variant a b ( )P hγ  ( )Z hγ  

Expression / 
value 0.0176 0.5665 

2

2

36930(1 exp( ))
59720

h
− −  

2

2

3888.1(1 exp( ))
8928

h
− −  

Function / 
variant 

( )PZE h  ( )ZPE h  (0)PZE / (0)ZPE   

Expression / 
value 24686 0.1953h−  24409 0.0033h−  24547.5  

 
 

RESULTS 
For checking out the validation of this method, cross validation is used in this paper. The results of 
cross-validation are showed in Table 2. And we draw the contours of water level which use the 
single DRK and binary DRK in Fig. 4. 
 Comparing the results, the errors of DRK are not larger than OK and IRK. We can conclude 
that DRK is an efficient method for spatial interpolation. 
 In different conditions, we calculated the groundwater resources that are listed in Table 3. In 
terms of IRK, the trends obtained by different variants regression can lead to deviation of 
groundwater storage from 9.5% to 17.3%, for the single linear regression and binary linear 
regression methods, when the bottom elevation of the unconfined aquifer ranges from –30 m to  
–10 m. 
 
Table 2 Cross-validation of interpolation errors, using different kriging methods. 

. OK1 OK2 Single DRK Binary DRK Single 
IRK 

Binary 
IRK 

Mean –0.1212 –2.993E-15 1.023E-15 –0.1234 –0.3378 –0.1806 
Root Mean Square 14.48 13.08 13.08 14.36 7.272 8.366 
OK1: in this method the variogram is derived by linear fit; OK2: in this method the variogram is directly 
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equal to the one of elevation. 
Table 3 Calculated groundwater resources of OK, DRK and IRK in different scenarios. 
Bottom 
level OK1 OK2 Single 

DRK 
Binary 
DRK 

Single 
IRK 

Binary 
IRK 

Average 
value EA EM EB 

-30 2.75 2.92 2.92 2.76 2.66 2.94 2.82 9.87% 10.46% 5.79% 
-20 2.09 2.26 2.26 2.10 2.00 2.28 2.16 12.88% 13.98% 7.60% 
-10 1.43 1.60 1.60 1.44 1.34 1.61 1.50 18.53% 20.90% 11.08% 
Unit of the groundwater resources: 1011 m3. 
EA: maximum error compared with average value; EM: maximum error between each data series; EB: error 
between single DRK and binary DRK. 
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Fig. 4 The contours of water level using DRK methods (the single DRK is on the left, the binary DRK 
is on the right). 

 
 
 Comparing the results when the variograms are determined by the elevation directly, or 
indirectly, the interpolation values are the same, and the difference lies in the estimated variance. 
With the variance of regression coefficient of elevation and water level, the estimated variance is 
changed. But when the precipitation is taken into account, the estimated resource is less than the 
former, and according to the increased bottom elevation of the aquifer, the smaller proportion that 
the reduced volume occupied ranged from 5.79% to 11.08%. 
 In the results of all the kriging method we implemented in this study, the resources estimated 
by the binary IRK are largest, and the results of single IRK are the least. We calculated the average 
value of al the results for different bottom levels, and the differences between single IRK and 
binary IRK account for 9.87%, 12.88% and 18.53% of the average values. When the 
denominators, perhaps the true values, become the results of single IRK, the ratios are larger and 
can reach 10.46%, 13.98% and 20.90%, respectively. 
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CONCLUSIONS 
From the results of the analysis above, we find that the different kriging method can produce 
distinct groundwater resources; the maximum error surpass 20% when the bottom elevation is  
–10 m. At different bottom elevation levels, the estimation of OK is less then the single DRK and 
binary DRK, and it lies between the single IRK and binary IRK. It shows that the estimation from 
the method proposed in the paper can generate optimistic results. So for positive researchers, this 
method can be applied deliberately. 
 Based on the regression equation of primary variant and auxiliary variant, the relationship 
between primary variant and auxiliary variant are constructed. Because of the data scarcity of the 
primary data set, this indirect method of obtaining the variogram is more rational than the original 
method. 
 The IRK method is a classic tool which was implemented to estimate the unknown variant by 
the auxiliary variant. In this study, we found that the chosen correlated variant can make great 
uncertainty in the results. Taking the average value as the criterion, the relative errors of different 
IRKs come to 9.9% and 18.5%. If the least one is taken as the criterion, the pessimistic errors can 
even reach 10.5% and 20.1%. Compared with the IRK method, the results of DRK lie between the 
IRKs, are closer to expectations and have fewer fluctuations. The pessimistic errors are only 
5.79% and 11.08%, approximately half of the IRKs. 
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