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Abstract Hydrological implications of global climate change are usually assessed by downscaling 
appropriate predictors simulated by General Circulation Models (GCMs). Results from GCM simulations 
are subject to a number of uncertainties due to incomplete knowledge about the underlying geophysical 
processes of global change (GCM uncertainties) and uncertain future scenarios (scenario uncertainties). 
Disagreement between projections of regional climate change suggests that reliance on a single GCM with a 
few selected scenarios could lead to inappropriate planning and adaptation responses. This paper 
summarizes recent published work by the authors. The following methods and tools for statistical 
downscaling are discussed: (a) Fuzzy Clustering, (b) Relevance Vector Machine (RVM) and (c) Conditional 
Random Fields (CRFs). Uncertainty modelling with non-parametric methods and possibility theory are 
discussed. Applications of the methodologies are demonstrated by projection of the meteorological drought 
in the Orissa subdivision, India, and by predictions of the inflow to Hirakud Dam, Mahanadi River basin in 
India.  
Key words downscaling; uncertainty; fuzzy clustering; relevance vector machine; possibility; conditional random fields 
 
 
INTRODUCTION 

Modelling the hydrological impacts of climate change involves using simulation results from 
General Circulation Models (GCMs), which are the most credible tools designed to simulate a 
time series of climate variables globally, accounting for the effects of greenhouse gases in the 
atmosphere. Despite the significant progress made in modelling future climate, uncertainties still 
exist (Mitchell & Hulme, 1999). Reliable results are not yet available at the spatial and temporal 
resolutions required for many impact studies (GCM outputs are typically at a spatial resolution of 
around 3° latitude and 4° longitude). This is because GCMs were not primarily designed for 
climate-change impact studies, and hence are not well suited for answering questions of primary 
interest to hydrologists concerning regional hydrological variability (e.g. Xu, 1999). A key 
challenge to hydrologists is thus to express the GCM results at a scale more relevant to 
hydrological studies, i.e. to downscale GCM experiment outputs. There are two approaches to 
downscaling:  
(a) Dynamic downscaling uses a physical model whose grid over a limited domain is nested 

within the coarse grid of a GCM (Jones et al., 1995). The major drawback of dynamic 
downscaling is its complicated design and high computational cost. It is also inflexible, i.e. 
the experiment has to be repeated on expanding the region or moving to a slightly different 
region.  

(b) Statistical downscaling derives empirical relationships between large-scale GCM variables 
(predictors) and regional-scale variables (predictands) such as precipitation and streamflow. 
There are three implicit assumptions involved in statistical downscaling (Hewitson & Crane, 
1992): (i) the predictors are variables of relevance and are realistically modelled by the host 
GCM, (ii) the empirical relationship continues to be valid under altered climatic conditions, 
and (iii) the predictors employed fully represent the climate change signal. A detailed 
discussion of different downscaling models may be found in Prudhomme et al. (2002).  

 The results of downscaling depend on the accuracy of the driving GCM, hence it is essential 
in regional impact assessment to consider uncertainty stemming from several sources. Different 
levels of uncertainty are related to: (1) GCM uncertainty or inter-model variability; (2) scenario 
uncertainty or inter-scenario variability; (3) different realizations of a given GCM due to parameter 
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uncertainty (intra-model variability); and (4) uncertainty due to downscaling methods. Simonovic 
& Li (2003, 2004) have shown the uncertainty in studies of climate change impacts on flood 
protections resulting from selection of GCMs and scenarios. Use of several GCMs and scenarios 
leads to a wide spread in the downscaled hydrological projection, especially in years far into the 
future, leading to uncertainties as to which among the several possible predictions should be used 
in developing responses. This paper discusses three applications: (a) a non-parametric method for 
modelling GCM/scenario uncertainty in projections of the standardized precipitation index, 
SPI-12, using fuzzy clustering for downscaling precipitation in the Mahanadi basin, India; (b) a 
possibilistic method for modelling GCM and scenario uncertainty in monsoon streamflow 
projections using the relevance vector machine for downscaling streamflow in the Mahanadi 
River; and (c) a conditional random field model applied to downscaling monsoon precipitation in 
the Mahanadi basin. 
 
 
DROUGHT ASSESSMENT USING NON-PARAMETRIC METHODS FOR 
GCM/SCENARIO UNCERTAINTY 

In this approach, fuzzy clustering-based downscaling (Ghosh & Mujumdar, 2006) is used for 
modelling future precipitation using circulation pattern, projected with the available GCM outputs. 
The standardized precipitation index (SPI) developed by McKee et al. (1993) is used as a drought 
index which requires precipitation as an input variable. Assuming future SPI to be a random 
variable at every time step, methodologies based on kernel density and orthonormal systems are 
used to determine the non-parametric pdf of SPI. Probabilities for different categories of future 
drought are computed from the estimated pdf. Details of the methodology may be found in Ghosh 
& Mujumdar (2007). The methodology is applied to the case study of the Orissa meteorological 
subdivision in India to analyse the severity of different degrees of drought in the future. 
 
Fuzzy clustering-based downscaling 
A statistical relationship based on fuzzy clustering and linear regression is developed between 
mean sea level pressure (MSLP) and precipitation, with reanalysis data of MSLP as predictor and 
observed precipitation as predictand. Gridded MSLP data used in the downscaling are obtained 
from the National Center for Environmental Prediction/ National Center for Atmospheric Research 
(NCEP/NCAR) reanalysis project (Kalnay et al., 1996). Monthly average MSLP outputs from 
1948 to 2002 were obtained for a region spanning 15o–25oN in latitude and 80o–90oE in longitude 
that encapsulates the study region. Figure 1 shows the NCEP grid points superposed on the map of 
Orissa meteorological subdivision. The method involves training NCEP data of circulation pattern 
with observed precipitation and use of the resulting regression relationship in modelling future 
precipitation from GCM projections. The training involves three steps (Ghosh & Mujumdar, 
2006): PCA, fuzzy clustering, and linear regression with seasonality terms. 
 
 

 
Fig. 1 NCEP grids superposed on map of Orissa, India (Ghosh & Mujumdar, 2006). 
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 Standardization (Wilby et al., 2004) is used prior to statistical downscaling to reduce 
systematic biases in the mean and variances of GCM predictors relative to the observations or 
NCEP/NCAR data. The procedure typically involves subtraction of mean and division by standard 
deviation of the predictor variable for a pre-defined baseline period (1960–1990) for both 
NCEP/NCAR and GCM outputs. PCA is used to convert predictors (MSLP at 25 grid points) into 
a set of uncorrelated variables, with the first three principal components explaining 99.7% of the 
variability of the original data set. Fuzzy clustering is used to classify the principal components 
into classes or clusters. Fuzzy clustering assigns membership values of the classes to various data 
points. The important parameters required for the fuzzy clustering algorithm are the number of 
clusters (c) and the fuzzification parameter (m), which are determined from cluster validity indices 
such as the Fuzziness Performance Index (FPI) and Normalized Classification Entropy (NCE). 
Linear regression is used to model the monthly precipitation with principal components, member-
ship values of the principal components in each of the clusters, and the cross product of 
membership values and principal components as regressors. An appropriate seasonality term is 
used to capture the seasonality. The linear regression equation is given by: 
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where Pt is the precipitation at time t, pckt is the kth principal component of circulation pattern at 
time t, and μit is the membership in cluster i of the principal components at time t. Parameters K 
and I are the number of principal components used and the number of clusters, respectively; βi, γk, 
and ρik are the coefficients of μit, pckt, and their product terms, respectively; and C is the constant 
term used in the equation. The membership values μit in each cluster are assigned to the different 
points based on fuzzy c-means algorithm. Seasonality is incorporated by equations (2)–(5), where 
p is the serial number of the month within a year (p = 1, 2, … , 12). The correlation coefficient (r) 
between the observed and predicted precipitation is used to measure the goodness of fit of the 
regression model. Here the r value obtained is 0.924. The long-term mean and median of observed 
vs model-predicted precipitation for the wet (JJAS) and dry period shows a good match. 
 
GCM output pre-processing 

GCM grid points do not match with the NCEP grid points and, hence, interpolation is performed 
with a linear inverse square procedure using spherical distances (Willmott et al., 1985) to obtain 
the GCM output at NCEP grid points. The eigenvectors or principal directions obtained from 
NCEP data are used as a reference to convert the gridded standardized GCM output to the 
corresponding principal components. 
 
Bias removal  

The bias of annual mean of precipitation as downscaled from different standardized GCM outputs 
is compared to observed data for the baseline period and it is seen that, even after standardization, 
the bias is not significantly reduced. To remove the biases, the 1961–1990 simulated mean is 
subtracted, and the observed baseline period mean is added, so that all the models have the same 
mean in the historic period, and thus the resulting uncertainty is solely due to GCM and scenario 
uncertainty and not due to biases present in the GCMs. 
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 The downscaling model significantly underestimates the inter-annual variability, most notably 
in the wet season. A reason for this may be the insensitivity of MSLP in correctly modelling 
precipitation. MSLP can partially explain historic rainfall variation, but an improvement of the 
model is possible if moisture content or humidity is incorporated. In the present study the analysis 
is only limited with MSLP because for most of the GCMs used, the outputs of moisture content or 
humidity are not available. The precipitation, thus computed for all the GCMs with scenarios, is 
converted into a suitable drought indicator for examining future drought scenario. 
 
Uncertainty modelling 
The severity of future drought may be studied by estimating the evolution of the pdf of a drought 
indicator. The drought indicator, SPI-12 (McKee et al., 1993) values computed with downscaled 
precipitation from GCMs are considered as the realizations of the random variable SPI-12 in each 
year The pdf is estimated based on: (a) assumption of normal distribution, (b) a kernel density 
estimation, and (c) an orthornormal series.  
 Kernel density estimation entails a weighted moving average of the empirical frequency 
distribution of the data. Most non-parametric density estimators can be expressed as kernel density 
estimators (Scott, 1992; Tarboton et al., 1998). It involves the use of kernel function (K(x)), 
defined by a function having the following property: 
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A pdf can therefore be used as a kernel function. A normal kernel (i.e. a Gaussian function with 
mean 0 and variance 1) is used here. A kernel density estimator ( )(ˆ xf ) of a pdf at x is defined by: 
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where n is the number of observations (here number of available GCM outputs), xl is the lth 
observation (here SPI-12), and h is the smoothing parameter known as bandwidth, which is used 
for smoothing the shape of the estimated pdf.  
 A pdf from a small sample can be estimated using the orthonormal series method, which is 
essentially a series of orthonormal functions obtained from the sample. The summation of the 
series with coefficients results in the desired pdf. For this work, the orthonormal series as the 
subset of the Fourier series consisting of cosine functions is selected: 

1)( =xoφ  and ...3,2,1)cos(2)( == jjxxj πφ  (8) 

 The pdf of SPI-12 computed using the three methods is presented in Fig. 2 along with 
frequency distribution of the sample for three arbitrarily chosen years (2007, 2041 and 2093) 
selected from the three time slices of the years 2000–2010, 2040–2050 and 2090–2100. For all the 
cases, it is clear from the figure that a normal pdf fails to model the samples of SPI-12, in 
particular the feature of multimodality, in all the three cases. The pdf obtained using orthogonal 
series closely resembles the shape generated by the frequency distribution. From the overall trend 
in probabilities of all categories of drought, it may be concluded that the probability of near-
normal condition will decrease, and the probabilities of mild, severe, and extreme droughts will 
increase over time. 
 
 
POSSIBILISTIC APPROACH TO GCM AND SCENARIO UNCERTAINTY 
Dissimilarities between the bias-corrected GCM simulations under different scenarios after the 
year 1990 (end of baseline period) result in different system performance measures which do not 
validate the assumptions of equi-predictability of GCMs and equi-possibility of scenarios, which 
are made in the earlier non-parametric analysis. Details of the methodology may be found in  
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Fig. 2 Estimation of pdf of SPI-12 for the years 2007, 2041 and 2093 (Ghosh & Mujumdar, 2007). 

 
 
Mujumdar & Ghosh (2008). A downscaling method based on fuzzy clustering and Relevance 
Vector Machine (RVM) is applied to project monsoon streamflow from three GCMs with two 
greenhouse emission scenarios. Possibility theory is an uncertainty theory devoted to addressing 
partially inconsistent knowledge and linguistic information based on intuition. Unlike probability, 
possibility is not computed from a frequency resulting from a sample, but is assigned to an event 
based on intuitive argumentation (Scott, 1999). This intuition about the future hydrological 
condition is derived based on the performance of GCMs with associated scenarios in modelling the 
streamflow of the recent past (1991–2005), when there are signals of climate forcing. Application 
of the possibilistic model is demonstrated with the monsoon streamflow of Mahanadi at Hirakud 
Dam. 
 
Downscaling to streamflow with relevance vector machine 
A statistical downscaling model based on PCA, fuzzy clustering and Relevance Vector Machine 
(RVM) is developed to predict the monsoon streamflow of Mahanadi River at Hirakud Reservoir, 
from GCM projections of large-scale climatological data. Surface air temperature at 2 m, mean sea 
level pressure (MSLP), geopotential height at 500 hPa and surface specific humidity are con-
sidered as the predictors for modelling Mahanadi streamflow in the monsoon season.  
 The RVM (Tipping, 2001) is a statistical tool which is capable of capturing the nonlinear 
relationship between the predictors and predictand with minimum overfitting. The mathematical 
structure of an RVM model is similar to the Support Vector Machine developed by Vapnik (1995).  
 For each GCM and scenario, the downscaling model is applied to give a future streamflow 
projection. Interpolation, PCA and fuzzy clustering are performed in the same way as described 
for the earlier work. Principal components and cluster membership of GCM output are then used 
in the developed RVM regression model to project the monsoon streamflow of Mahanadi in the 
future. 
 
Bias correction 
For validation purposes, the monsoon streamflow is also computed for the baseline period of 
1961–1990 with the GCM output. It is seen that there is considerable bias near zero flow values 
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and in extreme cases, in spite of standardization. To remove such bias from a given downscaled 
output, the following methodology is used: (a) cdfs are obtained with the downscaled GCM-
generated and observed streamflow for the years 1961–1990, using the Weibull probability 
plotting position formula, to act as a reference; (b) for a given value of GCM-generated stream-
flow (XGCM), the value of cdf (cdfGCM) is computed; (c) corresponding to cdfGCM, the 
observed streamflow value is obtained from the cdf of observed data; (d) the GCM-generated 
streamflow is replaced by the observed data, thus computed, having the same cdf value; and 
(e) based on the reference cdfs obtained in (a), the correction is applied to the streamflow values 
obtained from the GCM for the future. 
 
Possibilistic uncertainty modelling 
Possibility theory, founded by Zadeh (1978), is an uncertainty theory devoted to addressing 
incomplete information and partially inconsistent knowledge (Dubois, 2006). Complete ignorance 
about climate forcing will lead to assignment of equal possibility to all the GCMs and scenarios. 
With time, using the growing evidence from signals of climate forcing, it should be relevant to 
assign a possibility distribution to the GCMs and scenarios based on their performance in the 
period where climate change is visible.  
 The bias-corrected streamflow projections with their corresponding cdfs for four time slices, 
1991–2005, 2020s, 2050s and 2080s are presented in Fig. 3. The figure shows that the cdf of 
streamflow downscaled from one GCM is entirely different from that of another, and also that 
dissimilarity exists among two scenarios of any particular GCM although all scenarios project a 
reduction in monsoon flow. The amount of uncertainty also increases with time: in the 2080s it is 
higher than the other time slices. 
 The possibility distribution (or more appropriately, possibility mass function) obtained for the 
GCMs and scenarios (normalized values) is presented in Fig. 4. The difference between the 
possibility values of two GCMs for a given scenario is higher than that between the possibility 
values for two scenarios of a given GCM, which indicates that the uncertainty due to selection of 
GCM is greater than scenario uncertainty. 
 
 

 
Fig. 3 The cdfs of bias-corrected streamflow projections (Mujumdar & Ghosh 2008). 
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Fig. 4 Possibility distribution of GCMs and scenarios (Mujumdar & Ghosh, 2008). 

 
 

 
Fig. 5 Upper bound, lower bound and possibilistic mean cdf (Mujumdar & Ghosh, 2008). 

 
 
 The possibility values obtained for each GCM and scenario are used as weights to compute 
the possibilistic mean cdf (Fpm) for the time slices 1991–2005, 2020s, 2050s, and 2080s. 
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where Π(g, s) and Fgs are the possibility and cdf associated with gth GCM and sth scenario. The 
upper and lower bounds, possibilistic mean cdf and the most possible cdf (cdf for the 
GCM/scenario with possibility 1) are presented in Fig. 5 for 1991–2005, 2020s, 2050s and 2080s. 
Figure 5 shows a reduction in the probability of occurrence of extreme high-flow events in the 
future. Significant changes are observed in the low-flow conditions.  
 
 
CONDITIONAL RANDOM FIELD DOWNSCALING 

Conditional random field (CRF) downscaling is a new downscaling method in which the precipita-
tion sequence and atmospheric variables are represented as a linear chain CRF to downscale to 
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precipitation in a probabilistic framework. CRFs are discriminative, undirected graphical models 
that are very powerful for modelling relational information (Lafferty et al., 2001). By directly 
modelling the conditional probability of the output variables given the observations rather than the 
joint probability, CRFs avoid the difficult task of specifying a generative model for observations. 
As a result, CRFs can handle complex dependencies between observations, enabling them to use 
high-dimensional feature vectors. 
 
CRF-downscaling model 
Let the daily precipitation sequence at a site be represented by y, and the observed daily 
atmospheric variable sequence by x. The graphical structure for these random variables is 
represented as a linear chain CRF. Precipitation is discretized for computational purposes into a 
number of classes, including a class for zero precipitation. Hence, we can write the conditional 
distribution of the precipitation sequence y as (Lafferty et al., 2001): 
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where {λk} is a parameter vector, and fk is a set of real valued feature functions defined on pairs of 
consecutive precipitation values and the entire sequence of atmospheric data. The feature functions 
are the key components of a CRF. Each feature function can depend on observations from any 
time step.  
 
Data pre-processing 
The CRF-downscaling method is applied to monsoon (June–September) daily precipitation at 
eight sites in the Mahanadi basin in Orissa. In this application, large-scale atmospheric predictors 
of sea level pressure, specific humidity at 500hPa, precipitation flux, surface air temperature at 
2 m, maximum surface air temperature at 2 m, minimum surface air temperature at 2 m, surface  
U-wind (zonal/eastward) and surface V-wind (meridional/northward) are chosen. Data of daily 
values for atmospheric variables are obtained from the NCEP/NCAR reanalysis data for the period 
1951–2000 (Kalnay et al., 1996) and are used for training the model. High-resolution gridded 
daily precipitation data for 1951–2000 on a 1° × 1° grid interpolated from station data are obtained 
from the India Meteorological Department (IMD) for training the model. The MIROC3.2 medium 
resolution GCM from the Center for Climate System Research, Japan with the IPCC Assessment 
Report 4 A1B scenario is used for prediction.  
 Testing results (e.g. Fig. 6) show that the model is able to reproduce the distribution of daily 
precipitation well in terms of number of dry days (probability of zero precipitation) and wet day 
amounts. The model is also able to reproduce the pdf of wet and dry spell lengths for the testing 
period quite well. 
 
Projection of precipitation time series 
The PCs of the standardized MIROC model daily outputs interpolated at NCEP grid points for the 
chosen predictor variables are used to predict the most likely precipitation sequences at each site. 
Projections for the A1B scenario (Fig. 7) for years 2046–2065 and 2081–2100 show an increase in 
the number of wet days for the monsoon season at two sites.  
 
 
CONCLUDING REMARKS 

This paper presents an overview of the published work of the authors on statistical downscaling of 
GCM simulations and addressing uncertainties in hydrological predictions arising from the GCMs. 
There are several advantages and limitations associated with the methodologies discussed in this 
paper. The bias removal methodology presented here ensures that GCM projections present the 
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Fig. 6 Observed vs computed most likely (a) cdf; and (b) pdf for 1981–2000. (In (b) the observed data 
is the right-hand bar of each pair of bars.) 

 
 

uncertainty due to modelled climate change and not due to inherent bias. The non-parametric 
method for addressing uncertainty does not consider uncertainty due to parameterization and the 
structure of the impact model (GCM) itself, and those due to starting conditions used in GCM 
simulations and the downscaling techniques. For water resources management it is important to 
know the effectiveness of the GCMs in modelling climate change and which of the scenarios best 
represent the present situation under global warming. The possibilistic mean cdf provides a way of 
incorporating such information in projection of future uncertainty by assigning weights to GCMs 
and scenarios. Even though significant difference between the possibilities assigned to different 
scenarios may not be observed in the near future, there will be a growing difference between the 
possibility values assigned to GCMs with passage of time. Such a growing difference of the 
possibility values for different GCMs will increase the importance of the possibilistic model with 
time in future. A limitation of this approach is that uncertainties due to choice of downscaling 
method are not addressed in the methodology. CRF-downscaling is a new stochastic technique 
which does not need assumptions about independence of input atmospheric variables or their 
distribution and, hence, the method has substantial flexibility in using rich, overlapping features of 
the observations to model the conditional distribution. The limitations of the model are that it is 
computationally intensive and its implementation with discretization of precipitation involves loss 
of information. The results of the model are highly dependent on the accuracy of the ability of the 
driving GCM to accurately simulate atmospheric patterns. 

(a) 

(b) 
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Fig. 7 Future projected most likely cdfs vs current (1951–2004) cdf (Raje & Mujumdar, 2009). 
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