
New Approaches to Hydrological Prediction in Data-sparse Regions  (Proc. of Symposium HS.2 at the  
Joint IAHS & IAH Convention, Hyderabad, India, September 2009). IAHS Publ. 333, 2009.  

  
 

176

Coupling VIC with GCM models to predict climate change 
impact in the Hanjiang basin, China 
 
SHENGLIAN GUO, JING GUO, JUN ZHANG & HUA CHEN 

 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China  
slguo@whu.edu.cn 
 
Abstract A Smooth Support Vector Machine (SSVM) is proposed for statistical downscaling of daily 
precipitation and temperature from GCM output. The Variable Infiltration Capacity (VIC) distributed 
hydrological model with a 9 × 9 km2 grid resolution is established and calibrated in the Hanjiang basin of 
China. Validation results show that SSVM can approximate observed precipitation and temperature data 
reasonably well, and the VIC model can simulate the runoff hydrograph with high model efficiency and low 
relative error. By applying the SSVM model, the trends of precipitation and temperature projected from 
CGCM2 under the A2 and B2 scenarios will decrease in the 2020s, and increase in the 2080s. However, in 
the 2050s, the precipitation will decrease under the A2 scenario and there will be no significant changes 
under the B2 scenario, but the temperature will be not obviously change under either scenario. Under both 
scenarios, the impact analysis of runoff made with the downscaled precipitation and temperature time series 
as input to the VIC distributed model, resulted in a decreasing trend for the 2020s and 2050s, and an overall 
increasing trend for the 2080s. 
Key words climate change; statistical downscaling; GCM; SSVM; VIC model; impact study 
 
 
INTRODUCTION 
Recently, there has been a growth in the scientific evidence that global climate has changed, and 
that the changing will continue. Such changes in climate will also have significant impact on local 
and regional hydrological regimes, which will in turn affect ecological, social and economic 
systems. There is an urgent need to improve our understanding of the global climate system to 
assess the possible impact of a climate change on hydrological processes. General circulation 
models (GCMs), which describe atmospheric processes by mathematical equations, are one of the 
most important tools for studying the impact of climate change. Statistical downscaling aims to 
derive empirical relationships that transform large-scale features of the GCM (predictors) to 
regional-scale variables (predictands), such as precipitation and temperature (Tripathi et al., 2006).  
 Distributed hydrological models have the ability to produce simulations of spatial patterns of 
hydrological response due to soil, vegetation, land use, precipitation, evaporation and runoff; 
furthermore, the gridded structure of the models can be easily coupled with GCMs. Therefore, the 
statistical downscaling of GCM outputs as input to distributed hydrological models to assess the 
effects of climate change has been recognized by many authors (Xu, 1999; Wilby et al., 2006; 
Manoj et al., 2006; Ghosh & Mujumdar, 2008), and will become the best approach for climate 
change impact studies. 
 Here, a smooth support vector machine (SSVM) is proposed for statistical downscaling of 
daily precipitation and temperature from GCM output. The variable infiltration capacity (VIC) 
distributed hydrological model is established and calibrated in the Hanjiang basin of China. Then 
the downscaled data from CGCM2 outputs was used as input to the VIC model to assess the 
impact of climate change on future precipitation, temperature and runoff in the Hanjiang basin. 
 
 
STUDY AREA 
The Hanjiang basin is the largest tributary of the Yangtze River; it passes through the provinces of 
Shannxi and Hubei of China, and merges into the Yangtze River at Wuhan city. The river’s length 
is 1570 km and the basin area is 159 000 km2. The basin has a sub-tropical monsoon climate and 
has, as a result, dramatic diversity in its water resources. Annual precipitation varies from 700 to 
1100 mm, of which 70–80% of the total amount occurs in the wet season from May to October.  
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Fig. 1 Characteristics of the Hanjiang basin for the VIC model. 

 
 The Hanjiang basin plays critical roles in the flood control and water supply in China. The 
Danjiangkou Reservoir, located in the middle reach of the Hanjiang basin (Fig. 1), is the source of 
water for the middle route of the South–North Water Diversion Project, and the Jianghan plain in 
the lower basin is one of the most important bases for commodity grain production. The available 
water resources in Hanjiang basin and the impact of water diversion have been discussed by many 
authors (Guo et al., 2002; Chen et al., 2007).  
 
 
SSVM STATISTICAL DOWNSCALING MODEL 
Support vector machine (SVM) is a new machine study method based on statistical learning theory 
and stresses for studying statistical learning rules under small sample conditions (Vapnik, 1998). 
SVM solves many practical problems, such as small-sample, non-linear, high dimension number 
and global minimum points, by using a structural risk minimization principle. Recently, SVM has 
been widely applied in the fields of hydrological classification and regression analysis (Tripathi et 
al. 2006; Chen & Yu, 2007). However, it has some drawbacks in dealing with the large-sample 
data, such as slow training speed, low implementation efficiency and inadaptability to noise. To 
overcome the drawbacks of the SVM for large-sample data, Lee et al. (2005) proposed a new 
smoothing strategy for solving regression of the large-scale training data, called smooth support 
vector machine (SSVM), which has been verified as more efficient than the SVM algorithm 
mentioned above. The inequality constraint problem of SVM is replaced by an unconstrained 
problem and the SSVM has a unique global optimal solution. The detailed introduction of SVM 
and SSVM algorithms has been described by Lee et al. (2005), Tripathi et al. (2006) and Chen & 
Yu (2007). A tuning procedure which can automatically optimize parameters (Lee et al., 2005) is 
applied in this study to estimate the parameters of the SSVM. 
 
Predictands and predictors 
It is one of the most important steps in a downscaling exercise to select appropriate predictors, or 
characteristics from GCMs. The mean sea level pressure (MSLP), surface air temperature (2 m), 
500-hPa geopotential height (GH) and specific humidity (SH), and 850-hPa GH and SH were 
selected as the predictors for precipitation; 850-hPa temperature (TEM) and MSLP were 
considered as the predictors for temperature (Wilby et al., 1999). The observed daily data of large-
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scale predictor variables representing the current climate condition (1960–2000) were derived 
from the re-analysis data set of the National Center for Environmental Prediction/National Center 
for Atmospheric Research (NCEP/NCAR). The simulated daily data of the predictor variables by 
GCMs are available from the second generation coupled global climate model of the Canadian 
Centre (CGCM2). The geographical extent, 102.5°E–115°E, 27.5°N–37.5°N was chosen to 
include all areas with noticeable influence in the circulation patterns that govern weather in the 
Hanjiang basin. The inverse distance weighting method (IDW), which is based on the assumption 
that the interpolating surface should be influenced most by nearby points and less by more distant 
points, is used to spatially interpolate CGCM2 grids (3.75° lat. × 3.75° long.) into the NCEP/ 
NCAR grids. 
 
Verification of SSVM model 
In order to evaluate the performance of SSVM, the data set was divided into two parts, the 
calibrating set, 1961–1990, and validating set, 1991–2000. The calibrating data is used to establish 
the regression function that is learnt from calibrating data; the validating set is used to assess the 
prediction ability of the resulting regression function. 
 Prior to downscaling of the predictors, the NCEP/NCAR reanalysis data and GCM data are 
standardized to reduce systematic biases in the mean and variances of GCM outputs. Principal 
component analysis (PCA) has been widely used to reduce dimensions and compress data while 
keeping most of the information content of the original data set (Tripathi et al., 2006). Table 1 
show that the first eight PCs (principal components) for precipitation and the first two PCs for 
temperature have represented 90% and 91% of the information content of the original predictors, 
respectively. Therefore, the use of these PCs as input to SSVM, enables the dimension of the data 
set to be reduced without decreasing the performance of the statistical downscaling model.  
 The differences of the mean and standard deviation between the observed and simulated daily 
precipitation are considered as the most important criteria to evaluate the downscaling model. It 
was observed that the relative bias (RB) between mean observed and downscaled values are all 
within 6%, the standard deviation values downscaled by SSVM are much lower than those of 
observations which means that high rainfall and concentrated periods of precipitation cannot be 
captured well by the downscaling model. It is also shown that SSVM performs well, with a good 
agreement between the observed and downscaled outputs, for the mean values of daily mean 
temperature, daily maximum temperature and daily minimum temperature. Their relative biases are 
all within 3% except for daily minimum temperature in the winter season, while the standard 
deviation of downscaled temperature is smaller than the observed, especially in summer and winter.  
 
Table 1 The percent variance and cumulative values of the PCs by using the PCA method to process the 
NCEP predictors daily data set. 

  Predictand PCs No. 1 2 3 4 5 6 7 8 
Eigenvalue 77.34 25.58 10.33 6.16 3.5 3.12 1.76 1.5 
Percent variance 54 18 7 4 3 2 1 1 

  Precipitation 

Cumulative percent 54 72 79 83 86 88 89 90 
Eigenvalue 41.38 2.62       
Percent variance 86 5       

  Temperature 

Cumulative percent 86 91       
 
 

VIC DISTRIBUTED MODEL 
The Variable Infiltration Capacity (VIC) distributed hydrological model is a macro-scale 
hydrological model based on a soil–vegetation–atmosphere transfer scheme, which is designed to 
describe the land surface in numerical weather prediction and climate, and describe the variation 
and transfer of water and energy (Liang et al., 1994).  
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Establishing the VIC model for the Hanjiang basin 
The VIC model has one kind of bare soil and different vegetation types in each grid cell. It 
includes both the saturation and infiltration excess runoff processes in a grid cell with consider-
ation of the sub grid-scale soil heterogeneity, and the frozen soil processes for cold climate 
conditions. Three types of evaporation: evaporation from wet canopy, evapotranspiration from dry 
canopy and evaporation are considered. The one-dimensional Richards equation is used to describe 
the vertical soil moisture movement, and the moisture transfer between soil layers obeys the Darcy 
law. The ARNO method is used to describe baseflow which takes place only in the lowest layer. 
The routing model represented by the unit hydrograph method for overland flow and the linear 
Saint-Venant method for channel flow, allow runoff to be predicted (Liang et al., 1994).  
 The hydrological information, DEM, forcing, soil and vegetation data, etc., is required for 
VIC model calibration. DEM data of 0.009 degree (around 1 × 1 km2 cell size) spatial resolution 
for the Hanjiang basin were derived and used to delineate the sub-basin boundary and stream 
network. Figure 1 presents the information of the Hanjiang basin, including hydrological and rain 
stations, sub-basin boundary and 9 × 9 km2 grid. Vegetation type data were taken from the global 
land cover classification generated by the University of Maryland, USA, with a 1-km pixel 
resolution. Vegetation parameters were based on the vegetation from the Land Data Assimilation 
System. The soil parameters were derived from the soil classification information of the global 5-
min data provided by the National Atmospheric and Oceanic Administration, USA. 
 
Calibration and validation results 
The VIC model has six parameters that need to be calibrated. Daily hydrological and 
meteorological data from 1980–1986 and 1987–1990 are used for calibration and verification, 
respectively. The Nash-Sutcliffe efficiency (R2) and the relative error (RE) of the volumetric fit 
criteria are used to justify the performance of the model. The main parameterization procedures are 
described as follows: the model parameters were first calibrated for gauged sub-basins, and then 
the calibrated parameters were used as the initial values for the corresponding grids; finally, 
hydrological control stations were selected in the main streams of the Hanjiang basin to test and 
optimize the grid parameters through a trial-and-error method. Table 2 lists the simulated results of 
six control stations in the main stream of the Hanjiang basin during the calibration and validation 
periods. The mean value of R2 is 90.4% in the calibration period and 81.98% in the validation 
period. The mean RE values are 2.88% and 4.32% during the calibration and validation period, 
respectively. These results show that the VIC model can simulate daily runoff hydrograph well in 
the Hanjiang basin.  
 
Table 2 The calibration and validation results of six hydrological stations in the Hanjiang River. 

Calibration Validation    Hydrological Station Area  
(km2) R2 (%) RE (%) R2 (%) RE (%) 

   Shiquan   24 629 89.27 11.00 77.15 16.00 
   Ankang   35 600 87.94 12.00 77.75 12.00 
   Baihe   59 115 89.27   4.00 80.70   3.00 
   Danjiangkou   95 220 88.43 –3.00 78.22 –8.00 
   Xiangyang 103 261 98.69 –1.08 97.33   3.24 
   Huangzhuang 142 056 93.10 –5.67 80.71 –0.33 
   Mean  91.12   2.88 81.98   4.32 

 
 
HYDROLOGICAL IMPACT OF CLIMATE CHANGE 
The large-scale predictor variables derived from the A2 and B2 scenarios of CGCM2 are used as 
input to the validated SSVM model to downscale the future climate change scenarios. Daily 
precipitation, daily mean temperature, daily maximum temperature and daily minimum temper-
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ature are downscaled by SSVM for four periods, namely: the current (1961–2000), 2020s (2011–
2040), 2050s (2041–2070) and 2080s (2071–2100). The monthly mean statistics of downscaling 
results for precipitation and temperature for different periods are plotted in Fig. 2, showing a 
decreasing trend for the 2020s and the 2050s, and an increasing trend for the 2080s under scenario A2.  
 The deviations of simulated precipitation and temperature from the current simulated annual 
mean values, for the different future periods, are listed in Table 3. Between the current period and 
the 2080s, there are on average increases in precipitation of about 18.04% under A2 scenario and 
about 10.17% under B2 scenario. In the same period, there are average increases in daily 
maximum temperature and daily minimum temperature of about 1.86°C and 1.28°C under A2 
scenario and about 1.41°C and 0.93°C under B2 scenario. This implies a corresponding increase in 
daily mean temperature by about 1.63°C and 0.80°C under the A2 and B2 scenarios, respectively. 
 The inverse distance weighting method is used to interpolate the downscaled hydrological and 
meteorological data. These data were input to VIC to simulate the runoff corresponding to future 
climate change scenarios. Table 3 lists the relative changes of mean annual runoff in the Hanjiang 
basin. Under A2 scenario, the mean annual runoff changes by about –30.21%, –14.38% and 
31.04%, respectively, for the 2020s, 2050s and 2080s; under the B2 scenario, the changes are 
about –17.04%, –3.75% and 15.52%, respectively. Figure 3 shows the spatial distribution of runoff 
based on the 9 × 9 km2 grid in the Hanjiang basin for the current, 2020s, 2050s and 2080s periods. 
It can be seen that the spatial distribution of runoff simulated by the VIC model is, in general, 
consistent under both climate change scenarios.  
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Fig. 2 General trend in mean monthly precipitation (Pm) and temperature (Tm) for scenario A2 
downscaled by SSVM in the Hanjiang basin. 
 
 

SUMMARY AND CONCLUSION 
The objective of this study was downscaling of large-scale atmospheric variables from GCM 
outputs to climate variables at regional and local scale in order to investigate the hydrological  
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(a) current ( 1961–2000) 

  

A2 Scenario B2 Scenario 

Value of Runoff (mm) Value of Runoff (mm)
45 - 100
100 - 200
200 - 300
300 - 400

400 - 500
500 - 600
600 - 700
700 - 775

37 - 100 400 - 500
100 - 200 500 - 600
200 - 300 600 - 725
300 - 400

A2 Scenario B2 Scenario 

Value of Runoff (mm)
30 - 100
100 - 200
200 - 300
300 - 400

400 - 500
500 - 600
600 - 713

Value of Runoff (mm)
25 - 100
100 - 200
200 - 300
300 - 400

400 - 500
500 - 600
600 - 700
700 - 791  

(b) 2020s ( 2011-2040) 

 
 

B2 Scenario A2 Scenario 

Value of Runoff (mm)
32 - 100
100 - 200
200 - 300
300 - 400
400 - 500

500 - 600
600 - 700
700 - 800
800 - 866

 
(c) 2050s ( 2041–2070) 

Value of Runoff (mm)
40 - 100
100 - 200
200 - 300
300 - 400

400 - 500
500 - 600
600 - 711

 

A2 Scenario B2 Scenario 

 

Value of Runoff (mm) Value of Runoff (mm)
59 - 100
100 - 200
200 - 300
300 - 400
400 - 500

500 - 600
600 - 700
700 - 800
800 - 870

68 - 100 500 - 600
100 - 200 600 - 700
200 - 300 700 - 800
300 - 400 800 - 855
400 - 500

 
(d) 2080s ( 2071–2100) 

Fig. 3 Spatial distribution of runoff simulated by the VIC distributed model in the Hanjiang basin. 
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Table 3 Simulated changes in annual mean precipitation, temperature and runoff under the A2 and B2 
scenarios of CGCM2. 

A2  Scenario B2  Scenario  
Current 2020s 2050s 2080s Current 2020s 2050s 2080s 

Precipitation (mm) 1082.37 952.87 1059.68 1277.67 1117.84 1021.55 1117.09 1231.53 
Change (%)  –11.96 –2.10 18.04  –8.61 –0.07 10.17 
Mean temperature (°C) 14.80 13.68 14.89 16.43 14.79 14.24 14.91 15.59 
Change (%)  –1.20 0.09 1.63  –0.55 0.12 0.80 
Runoff (108m3) 571.62 398.96 489.45 749.05 621.20 515.32 597.92 717.63 
Changes (%)  –30.21 –14.38 31.04  –17.04 –3.75 15.52 

 
 
impact of future climate change. A smooth support vector machine (SSVM) was proposed for 
statistical downscaling of daily precipitation and temperature. The SSVM model approximates the 
observed climate data reasonably well, except that it has underestimated the variance of 
precipitation and temperature. The VIC distributed model was used with a 9 × 9 km2 grid and the 
results show that it can simulate the runoff hydrograph well in the Hanjiang basin.  
 For downscaling precipitation and temperature, the results corresponding to both climate 
change scenarios show that the SSVM model has estimated a decreasing trend in the 2020s, an 
increase trend in the 2080s, and a mixed trend in the 2050s. The impact analysis of runoff from the 
Hanjiang basin shows a similar trend in future under both climate change scenarios. Moreover, the 
VIC distributed model also gives the spatial distribution of changes of runoff and it can be seen 
that, throughout almost the entire basin in the 2020s and most regions of the basin in the 2050s, 
runoff will be decreasing under both climate change scenarios, while in the 2080s runoff will be 
increasing significantly across the whole basin.  
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