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Abstract This study provides an evaluation of a global flood prediction (GFS) system utilizing satellite-
based rainfall and readily available geospatial data sets. The GFS, developed by our group, uses a relatively 
simple hydrological model, based on the runoff curve number method to transform rainfall into runoff. A 
grid-to-grid routing calculates the flow. Rainfall estimates are from TRMM Multi-satellite Precipitation 
Analysis (TMPA). An evaluation of the TMPA algorithm using a radar/gauge merged rainfall product over 
two basins in the southeast USA indicated that seasonal and regional considerations as well as basin size are 
important in using TMPA to drive hydrological models. GFS-based flood predictions were evaluated using 
observed streamflow data, MODIS-based inundation maps and a flood database. The GFS was able to 
simulate the onset of flood events produced by heavy rainfall; however, the prediction deteriorated in the 
later stages. This result points out the need for an improved routing component. The model showed 
dependency by the geographical region. A new hydrological model, with an improved physical represen-
tation and routing component is currently under development and will likely lead to improved validation 
results. 
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INTRODUCTION  

Many hydrological simulation studies, whether related to climate change scenarios, flood 
forecasting, or water management, depend heavily on the availability of good-quality 
precipitation estimates. Difficulties in estimating precipitation arise in many remote parts of the 
world and particularly in developing countries where ground-based measurement networks (rain 
gauges or weather radar) are either sparse or nonexistent, mainly due to the high costs of 
establishing and maintaining infrastructure. This situation imposes an important limitation on 
the possibility and reliability of hydrological forecasting and early warning systems in these 
regions. Recent improvements in the ability of satellite-based precipitation retrieval algorithms 
(e.g. Sorooshian et al., 2000; Hong et al., 2004; Huffmann et al., 2007) to produce near-real-
time estimates (with global coverage) at high space and time resolutions make them potentially 
attractive for hydrological forecasting in ungauged basins (e.g. Yilmaz et al., 2005; Su et al., 
2008). This study provides an evaluation of an initial satellite-based near real-time global flood 
prediction system developed by Hong et al. (2007) and operationally available at our website 
(http://trmm.gsfc.nasa.gov/). In this system, a relatively simple hydrological model, based on the 
runoff curve number (CN) and antecedent precipitation index methods, transforms rainfall into 
runoff. Runoff is then routed grid-to-grid to estimate flow. The key input to the current system is 
the rainfall estimates from the NASA-based Tropical Rainfall Measuring Mission (TRMM) Multi-
satellite Precipitation Analysis (TMPA; Huffman et al., 2007). This paper initially focuses on the 
evaluation of the TMPA algorithm using a radar/gauge merged rainfall product over two basins in 
the southeast USA. This analysis is followed by the evaluation of the runoff predictions using 
observed discharge data and other sources of flood information. This initial evaluation of the 
global flood prediction system is expected to provide useful insights into strengths and limitations 
of the initial global flood prediction system and point toward potential improvements necessary for 
increasing its reliability and accuracy. 
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STUDY AREA, DATA SETS AND HYDROLOGICAL MODEL 
Study area 
The study area includes two basins of varying size and geographic location within the relatively 
humid southeastern USA (Fig. 1; Table 1). The basins are free of snow. The study area is well 
instrumented with outlet streamgauges, raingauges and weather radar, and therefore it is suitable 
for the evaluation of the global flood prediction system. 

 

 
Fig. 1 Study area. TMPA product grids with 0.25° × 0.25° resolution are also shown. 

 
Table 1 Study basin characteristics and relevant information. 

Elevation Area P* Q* Basin ID Basin name 
(m) (km2) (mm) (mm) 

ILLINOIS Illinois River near Tahlequah, OK  202.4   2 484 1259 445 
FLINT Flint River near Bainbridge, GA   17.7 19 606   993 197 

P = mean annual precipitation from radar/gauge; Q = mean annual runoff. 
*based on July 2007–August 2008 time period. 
 
 
Radar/gauge merged precipitation estimates 
Six-hourly NCEP (National Centers for Environmental Prediction) gridded Stage IV precipitation 
estimates (Lin & Mitchell, 2005) are available on the National Hydrologic Rainfall Analysis 
Project (HRAP) grid (~4 km × 4 km). NCEP Stage IV is a mosaic of the Stage III analyses 
produced by the National Weather Service (NWS). NWS uses a multivariate optimal estimation 
procedure to incorporate hourly raingauge data into the radar estimates (Seo, 1998) which is 
followed by a quality control. Mean areal precipitation for a basin was calculated by averaging the 
HRAP grids contained in the basin. Hereafter, this precipitation data set will be called RADG. 
Although NCEP Stage IV product is widely used in the literature for testing satellite-based 
algorithms, it has its own limitations and cannot be considered as truth (see Stellman et al., 2001; 
Yilmaz et al., 2005). 
 
Satellite-based precipitation estimates 
The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 
(Huffman et al., 2007) provides precipitation estimates by combining information from multiple 
satellites, as well as raingauges where feasible, and is available at 3-hourly, 0.25° × 0.25° latitude–
longitude spatial resolution covering the globe between latitude band 50°N–S. The real-time 



Evaluation of a satellite-based near real-time global flood prediction system 
 

231

product makes use of TRMM’s highest quality observations, along with a high quality passive 
microwave-based rain estimates from three to seven polar-orbiting satellites and all the geo-
synchronous IR sensors. Low Earth-orbit microwave data have a strong physical relationship to 
the hydrometeors that result in surface precipitation, but each individual microwave sensor 
provides a very sparse sampling of the time–space occurrence of precipitation. In contrast, the 
geosynchronous IR data provide excellent time–space coverage but poorly correlated to surface 
precipitation. In TMPA algorithm IR data are calibrated using the microwave data to improve the 
rainfall estimates (see Huffmann et al., 2007).  
 A post-real-time product also incorporates monthly raingauge analysis for bias correction. We 
used the post-real-time TMPA product because a recent upgrade (February 2009) to the real-time 
algorithm incorporates additional satellite data sources and employs monthly climatological 
adjustments to approximate the bias characteristics of the research quality post-real-time product 
(Huffmann et al., 2009). Mean areal precipitation (TMPA, hereafter) for a basin was calculated by 
area averaging the 0.25° × 0.25° grids contained in the basin.  
 
Flood data sets 
Daily observed streamflow data for the study basins are obtained from the US Geological Survey 
website (http://www.waterdata.usgs.gov). A list of large flood events was determined from the 
Dartmouth Flood Observatory (DFO) website (http://www.dartmouth.edu/~floods). The DFO 
compiles information on large floods from a variety of news, governmental, instrumental and 
remote sensing sources. The archive contains statistics related to location (latitude and longitude of 
the flood centroid) name of rivers, begin–end dates, damage (loss of life and property), main 
cause, areal extent and magnitude. MODIS-based inundation maps provided by DFO were also 
used in the evaluation. 
 
Hydrological model 
A relatively simple rainfall–runoff model based on the Natural Resources Conservation Service 
(NRCS) runoff curve number (CN) approach converts TMPA-based satellite rainfall into runoff 
estimate at 0.25° × 0.25° latitude–longitude spatial resolution every 3 h (Hong et al., 2007). The 
resulting quasi-global (between latitude band 50°N–S) runoff map is operationally available at 
http://trmm.gsfc.nasa.gov/. The NRCS-CN approach estimates surface runoff as a function of 
precipitation, soil type, land cover and antecedent moisture conditions. The only parameter, the 
runoff curve number (CN), is estimated from the area’s hydrological soil group (HSG), land-
use/cover and hydrological condition. Hong et al. (2007) proposed an approach to estimate CN 
using a global HSG map derived from the Food and Agricultural Organization soil data set in 
conjunction with a MODIS-derived land cover classification map. They also suggested a concept 
based on antecedent precipitation index to estimate the time variation of CN values under 
changing surface moisture conditions (dry or wet). A simple grid-to-grid routing scheme is then 
used to move the surface runoff downstream. For details see Hong et al. (2007).  
 
 
METHODS 
The first objective was to analyse the differences between TMPA and RADG precipitation 
estimates. The August 2006–July 2008 study period was selected based on data availability. Data 
sets were aggregated into daily periods and the time periods that are missing from either of the 
precipitation estimates have been excluded from the analysis. Cumulative precipitation graphs 
were constructed to analyse the bias behaviour between data sets throughout the study time period. 
Differences in daily precipitation estimates were further investigated using scatter plots 
constructed for cold (DJF: December, January, February) and warm (JJA: June, July, August) 
seasons, and quantitative statistics including percent bias (difference in TMPA and RADG 
estimates as a fraction of RADG estimate, times 100) and correlation coefficient. Categorical 
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statistics were calculated for the daily precipitation to evaluate the TMPA estimates in detecting 
rain events at different precipitation thresholds over the two study basins. Categorical statistics 
include probability of detection (POD), false alarm ratio (FAR) and the frequency bias index 
(FBI). These are based on a 2 × 2 contingency table—a: TMPA yes, RADG yes; b: TMPA yes, 
RADG no; c: TMPA no, RADG yes; and d: TMPA no, RADG no. The POD (= a/(a + c)) gives the 
fraction of rain events that were correctly detected and ranges from 0 to 1; 1 being the perfect 
score. The FAR (= b/(a + b)) measures the fraction of rain events that were actually false alarms 
and ranges from 0 to 1; 0 being the perfect score. The FBI (= (a + b)/(a + c)) is the ratio of the 
number of estimated to observed rain events; it can indicate whether there is a tendency to 
underestimate (FBI < 1) or overestimate (FBI > 1) rainy events. It ranges from 0 to infinity; 1 
being the perfect score.  
 The second objective was to evaluate the runoff predictions. A basin-scale analysis was 
carried out to compare observed discharge values at the outlet of each study basin with the runoff 
calculated by the hydrological model. Due to current limitations of the routing component (e.g. 
coarse spatial resolution and constant flow velocity), simulated basin-scale runoff was calculated 
by area averaging the grid-runoff depths over the basin. The capacity of the model to predict the 
spatial extent of the flood was evaluated using the MODIS-based inundation maps provided by the 
Dartmouth Flood Observatory. Finally, the ability of the model to detect historical large flood 
events (provided by DFO) during April 2007–July 2008 (16 months) was tested. From the DFO 
flood archive we used coordinates of the flood centroid, together with the beginning and ending 
dates of flood events, to evaluate the predictive capacity of the hydrological model. We considered 
a flood event successfully detected if within 1 degree distance from the flood centroid and within a 
±1-day temporal window there exists at least one model grid with simulated runoff higher than 
50 mm.  
 
 
RESULTS 
Comparison of the precipitation estimates 
Figure 2 shows the cumulative precipitation estimates for the basins over the study period. In Flint 
basin (Fig. 2(a)), TMPA produces more precipitation compared to RADG (indicated by the 
upwards deviation of the TMPA precipitation accumulations) with almost linearly increasing posi-
tive bias accumulation throughout the study period (dash-dot line). Overall bias between TMPA 
and RADG estimates during the study period is positive, 13%. In Illinois basin (Fig. 2(b)) TMPA 
indicates less precipitation compared to RADG with a negative 8% overall bias. Note also that the  

 

 

(a) (b) 

Fig. 2 Cumulative precipitation estimates from TMPA and RADG, for: (a) Flint basin, and (b) Illinois 
basin. The difference between TMPA and RADG estimates is shown as the dash-dot line.  
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(a) (b) 

(c) (d) 

Fig. 3 Scatter plots for winter (DJF) and summer (JJA) seasons for (a,b) Flint, and (c,d) Illinois basins, 
respectively.   

 
 
accumulated bias (dash-dot line) magnitude alternates between more negative and less negative 
values throughout the time period,, indicating the presence of periods with positive and negative 
bias between TMPA and RADG. This changing behaviour of satellite rainfall estimates in study 
basins might indicate regional trend in precipitation estimated by the TMPA algorithm. Scatter 
plots in Fig. 3 facilitate a visual comparison of the magnitude correspondence of daily RADG and 
TMPA precipitation. The diagonal line indicates a “perfect” correspondence.  The study period is 
divided into cold (DJF) and warm (JJA) seasons to examine the seasonal behaviour. Comparison 
of Fig. 3(a) and (b) indicates that TMPA overestimates the rainfall in Flint basin regardless of the 
season. The agreement between RADG and TMPA estimates is more pronounced during the cold 
season (correlation coefficient is 0.89 and %Bias is 4.55) compared to the warm season 
(correlation coefficient is 0.86 and %Bias is 10.57). In Illinois basin (Fig. 3(c) and (d)), TMPA 
tends to underestimate precipitation compared to RADG regardless of the season. This behaviour 
is more pronounced in the warm season as indicated by negative 15% bias compared to negative 
4.4% bias in the cold season. The correlation coefficient significantly deteriorates in summer 
season (0.68) compared to the cold season (0.83), most likely due to local character of convective 
precipitation in summer. These findings agree with Tian et al. (2007), who compared TMPA and 
Stage IV radar rainfall estimates over the USA for 3-year seasonal accumulations at 0.25° spatial 
grids. Tian et al. (2007) reported that TMPA overestimates Stage IV rainfall over Flint basin 
region regardless of the season. Over Illinois basin region their results showed TMPA 
underestimating Stage IV rainfall in summer. In winter, however, they found both over- and 
underestimation between TMPA and Stage IV rainfall estimates for the grids within Illinois basin 
region. Similar to our findings, Tian et al. (2007) reported higher (lower) correlations in winter 
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(summer) between TMPA and Stage IV estimates. In the scatter plots shown in Fig. 3, the large 
precipitation points along either x-axis or y-axis are particularly important if these estimates are to 
be used for flood detection. Points along the x-axis (y-axis) represent undetected (falsely predicted) 
large rain events. This behaviour can be seen in Fig. 3(a), (c) and (d) up to 10 mm rainfall. One 
reason might be that the satellite-based rainfall is based on a snapshot in a 3-h window, while radar 
estimates are calculated from more frequent estimates. However, for larger rain events RADG and 
TMPA agree well on the occurrence of the events but with large random errors (these are the 
points away from both axis lines). Figure 4 shows the categorical evaluation measures calculated 
for various rain rate thresholds. Figure 4 indicates better rainfall detection correspondence between 
TMPA and RADG estimates in the larger Flint basin compared to the smaller Illinois basin, as 
indicated by higher POD and lower FAR values. Focusing on Flint basin, high POD values (~0.9) 
up to 10 mm rainfall thresholds are followed by a pronounced decrease (0.78) at 20 mm threshold. 
There is a tendency to increase in FBI and FAR values with increasing threshold indicating that 
the TMPA tends to increasingly overestimate the number and magnitude of events as rain rate 
increases in Flint basin. In the Illinois basin, the categorical statistics present similar behaviour as 
the threshold increases, while providing a general deterioration trend in statistics compared to Flint 
basin. Deterioration in the statistics towards the higher rainfall thresholds points may undermine 
flood detection efforts. In summary, this analysis indicates that seasonal and regional considera-
tions, as well as basin size, are important in using satellite-based rainfall estimates as input to the 
hydrological models. The analysis indicates that in smaller watersheds (such as Illinois) the errors 
in precipitation estimates may not be reduced by area-averaging as much as in the large basins (i.e. 
correspondence between TMPA and RADG is somewhat better in the larger basin). This is 
reflected by the somewhat better bias, correlation coefficient and categorical statistic values 
obtained for Flint basin compared to Illinois basin. Good values for POD (~0.8–0.9), FAR (~0.2–
0.3) and FBI (~1–1.1) obtained for Flint basin indicate that the TMPA product is more promising 
for use in hydrological predictions in relatively large basins.  
 
 

 
Fig. 4 Categorical evaluation measures for Flint basin (black line) and Illinois basin (grey line).   

 
 
Evaluation of the flood predictions 

Figure 5(a) and (b) facilitates a comparison between the observed discharge at the Flint basin 
outlet and model simulated runoff, respectively. Figure 5 shows that high simulated runoff events 
correspond relatively well with the high observed discharge events. However, simulated events are 
earlier and flashier than the observed events, indicating that improvements are needed in the model 
to better represent the smoothing and delay mechanisms exerted by the basin on the excess rain 
water entering the stream before the routing process. However, observed discharge includes the 
real stream routing process. For this reason there is a magnitude difference between fall. In this 
study, due to limitations of the routing component, runoff more closely represents the  
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Fig. 5 (a) Observed discharge, and (b) simulated runoff values for Flint basin. 

 

 
Fig. 6 (a) Observed discharge, and (b) simulated runoff values for Illinois basin. 

 
 
discharge and runoff values given in Fig. 5. Here we are more interested in the general behaviour 
of these quantities rather than the magnitude differences. 
 In addition, observed baseflow and water storage (January–May 2008) in the Flint basin could 
not be represented by the hydrological model. This is a limitation of the curve number based 
approach which only estimates the excess precipitation and does not consider groundwater storage. 
These limitations have already been considered in the development of a new physically-based 
hydrological model with groundwater representation and an improved routing scheme (Wang et 
al., 2009). Note also that several simulated high runoff events do not correspond to high flow 
events in the observations (e.g. mid-October and mid-December 2007, mid-May 2008). 
Comparison of the TMPA and RADG rainfall estimates (not shown) indicated that these events are 
mostly due to positive bias in the TMPA at these time periods. In the Illinois basin (Fig. 6), 
observed discharge is flashier and contains a smaller baseflow component. High observed flow 
events are better matched with high simulated runoff events. Again, the hydrological model lacks 
the smoothing and delay mechanisms, but this problem is less pronounced for this smaller basin 
compared to the larger Flint basin. This behaviour is expected because the larger basin  
(a) introduces more smoothing and delay to convert runoff into discharge, and (b) has more 
baseflow component. Simulated runoff contains both overestimated events (e.g. late August 2007 
and early March 2008) and underestimated events (mid-March 2008) compared to the obser-
vations, in part due to the bias in the satellite-based precipitation estimates. 
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(a) (b) 

Fig. 7 Spatial extent of the Myanmar flood caused by the Cyclone Nargis on 5 May 2008: (a) MODIS 
inundation map for 5 May 2008 provided by the Dartmouth Flood Observatory (dark grey regions show 
inundated land), and (b) severely flooded regions estimated by the  hydrological model (dark grey 
regions inside the boxes) at time 03:00 GMT.  

 
 
 Figure 7 facilitates evaluation of the spatial extent of the flooding produced by the hydro-
logical model. Figure 7(a) shows the MODIS inundation map provided by DFO after-the-fact (2– 
4 days delay depending on the cloud cover) and Fig. 7(b) shows the flood extent prediction by the 
hydrological model as soon as the satellite rainfall estimates were available (6–9 hours delay for 
the real-time TMPA product). It can be seen that the spatial extent of the flood is well simulated 
by the model. Our analysis including other events showed that the model is capable of estimating 
the spatial extent during the onset of the floods caused by heavy rainfall; however, in the later 
stages the estimates deteriorate. This is due to limitations in the routing component (channel 
hydraulics), which is responsible for moving the water downstream and holding the excess water 
on the ground.  
 Figure 8 shows the locations of historical flood events (all markers) during the April 2007–
July 2008 period. Detected flood events are shown as a black circles and undetected flood events 
are shown as white squares. Among 263 flood events, the model was capable of detecting 175 
events (67% success rate). This analysis is also valuable in analysing the dependency of the model 
predictions in geographic locations. The model is capable of detecting flood events located in the 
tropical zone in Asia. The model also detected a majority of flood events in Australia, South 
 
 

 
Fig. 8 Locations of the historical flood events compiled by DFO. Flood events detected by the 
hydrological model are shown as black circles. Undetected flood events are shown as white squares. 
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Africa, Europe and the Americas. The model seems to be incapable of detecting floods in arid and 
semi-arid regions (e.g. North Africa, Central Asia), or regions with snow (higher latitudes) and 
complex topography (Central America, Central Asia). Several factors contribute to these 
limitations, such as: (a) satellite-based precipitation algorithms have limitations in regions with 
snow and complex topography; and (b) the hydrological model does not consider snow processes 
and its coarse resolution may not be adequate to resolve complex topography. This analysis only 
focused on detection of historical floods. Of course, a natural and complimentary extension would 
be to analyse the false flood events predicted by the model. This is currently underway, but is 
further complicated by the fact that the DFO archive most likely does not contain all the flood 
events that occurred during this time period.  
 
 
SUMMARY AND CONCLUSIONS 

This study evaluated an initial satellite-based near real-time global flood prediction system 
developed at NASA Goddard (Hong et al., 2007) and operationally available at our website 
(http://trmm.gsfc.nasa.gov/). The first step was to evaluate TMPA-based satellite precipitation 
estimates (the key input to the system) using the NCEP Stage IV radar rainfall product. Evaluation 
over two basins in the southeastern USA indicated that basin size and seasonal considerations are 
important in using satellite-based rainfall estimates as input to the hydrological models. Generally 
better quantitative statistics (bias and correlation coefficient) and categorical statistics (POD, FAR, 
FBI) were obtained for the larger Flint basin. Relatively good values for these statistics indicated 
that the TMPA product is promising for use in hydrological predictions in basins of large size. The 
second step was to evaluate the flood predictions calculated by the hydrological model using 
observed streamflow data, MODIS-based inundation maps and historical flood archive. The 
analysis indicated that the model was able to simulate the onset of flood events produced by heavy 
rainfall; however, the prediction deteriorated in the later stages of the flood events. This result 
points out the need for an improved routing component, specifically to reflect flow smoothing and 
delay mechanisms exerted by the natural river basin. The model also showed dependency by the 
geographical region, with best performances in tropical regions of East Asia. A new hydrological 
model, with an improved physical representation and routing component is currently under 
development and will likely lead to improved validation results.  
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